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Abstract 

 

The properties of thin, cerium activated, yttrium aluminum garnet (YAG:Ce), 

scintillating fiber-shaped crystals were investigated for particle tracking and calorimetric 

applications such as Compton imaging of Special Nuclear Material from remote 

platforms at standoff ranges.  Silicon photomultipliers (SiPMs) are relatively new, 

efficient, single photon sensitive, solid-state photodiode arrays which are well suited for 

the readout of scintillating fibers.  Using SiPMs, the scintillation decay time profiles of 

six 400 µm YAG:Ce fiber crystals were measured under alpha and gamma irradiation.  

Interestingly, the observed decay times in the thin fibers were substantially slower than 

values for bulk single crystal YAG:Ce reported in open scientific literature; possible 

explanations are explored.  Both laser induced photoluminescence and alpha scintillation 

measurements were conducted to estimate the effective attenuation length of the YAG:Ce 

fibers.  Using the measured attenuation lengths, position-of-interaction measurements 

were conducted to determine the achievable position resolution in YAG:Ce fibers using 

dual fiber end SiPM readouts.  The measured results are compared to theoretical 

calculations and Monte Carlo simulations.  Finally, improvements to the detector 

concept, including a formula to determine the best SiPM model based on device 

parameters and the Birks’ figure of merit of the scintillating material, are presented. 
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I.  Introduction and Motivation 

In 1946, when asked by a congressional panel how to detect a uranium weapon 

being smuggled into New York harbor, Dr. J. Robert Oppenheimer, director of the 

Manhattan Project, famously replied, “Well, you might get a screwdriver and open up 

every crate and every suitcase and inspect it.”  Oppenheimer believed that there was no 

defense against nuclear terrorism and that there never would be.  Since that time, 

advancements in the detection of ionizing radiation have revolutionized medical and 

scientific fields of study.  Yet, the fundamental problems with detecting even large 

quantities of special nuclear material (SNM) at ranges of even a few meters remain.  As 

the risks of nuclear proliferation and nuclear terrorism continue to grow at alarming and 

compounding rates, the need for effective monitoring of illicit nuclear trafficking has 

become increasingly apparent and is a national security priority [1].   

Detection of SNM gamma ray emission at standoff ranges (i.e. distances greater 

than or equal to 1 km) requires the capability to both spectroscopically identify its 

particular isotopes and form an estimate of its spatial location.  Due to the low activity of 

SNM, these estimates are inherently based on observation of very few characteristic 

gamma ray photons in an otherwise noisy background environment.  Present 

spectroscopic methods rely on massive, bulky, inefficient, and power consuming 

technologies which prevent implementation on modern-day remote sensing platforms 
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such as a fleet of unmanned aerial vehicles which could patrol borders and major 

shipping lanes.  Any viable remote detector must be compact, rugged, efficient, robust, 

reliable, and capable of discerning and extracting signal information from a complex 

environment. 

Unlike collimated imaging techniques (e.g. mechanical modulation or coded 

aperture imaging), Compton cameras can provide high resolution images without 

blocking essential gamma ray photons.  By using a densely packed matrix of thin fiber 

scintillators optically coupled to a pixilated detector, an efficient Compton camera with 

exceptional inherent spatial resolution can be achieved [2].  The use of thin fibers may 

allow recoil electrons from Compton scatter events to escape one fiber and deposit 

energy in another allowing even faster image acquisition times.   

Recent developments in micro-pulling-down crystal growth technology has 

allowed for the growth of shaped single crystal inorganic scintillators, such as cerium 

activated multi-component oxides (e.g. yttrium aluminum garnet, YAG).  Inorganic fiber 

shaped scintillators as thin as 400 µm  in diameter and as long as 3 m have been 

commercially produced for particle tracking experiments [3].  A variety of position 

sensitive scintillation photon readouts are available (e.g. position sensitive 

photomultiplier tubes, charged coupled device cameras, etc.) and can provide inherently 

precise 2-D particle tracking in a bundle of scintillating fibers. 

A relatively new solid-state photosensor, the silicon photomultiplier, is sensitive 

to single visible light photons and produces very fast, very large electronic signals while 

consuming little power at low operating voltages [4].  Arrays of silicon photomultipliers 

are ideally suited for the readout of a matrix of thin inorganic scintillating fibers for 
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Compton imaging applications.  Such a sensor is a promising concept for remote standoff 

or aerial detection of SNM. 

1. Objectives 

The objective of this research is to investigate the properties of thin inorganic 

scintillating fibers when coupled to silicon photomultipliers.  This knowledge is required 

prior to implementation and optimization of a compact, deployable Compton camera 

prototype capable of detecting SNM.  Compton cameras require precise spatial position 

and spectroscopic information in order to reconstruct images from gamma ray 

interactions.  Therefore, the achievable position and energy resolution of cerium activated 

yttrium aluminum garnet (YAG:Ce) scintillating fibers is studied, modeled, and 

measured.  Results from theoretical calculations, idealized simulations, and empirical 

experiments are presented and discussed in this work. 

2. Thesis Outline 

This thesis presents the background, theory, methodology, and results pertaining 

to calorimetric and position-of-interaction experiments using inorganic scintillating fibers 

with silicon photomultiplier readouts.  Chapter 2 discusses the background information 

relevant to Compton imaging, scintillation detection, scintillating fiber materials of 

interest, and silicon photomultipliers.  Chapter 3 discusses the experimental and 

computational objectives and the methodology, tools, and equipment to be used in 

achieving them.  Chapter 4 discusses the results from modeled and empirical experiments 

as well as the data analysis methodology applied.  Chapter 5 summarizes the significant 

findings and conclusions, and lists recommendations for future research. 
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II.  Theory and Background 

This chapter discusses the theory relevant to designing a novel Compton camera 

using inorganic scintillating fibers and silicon photomultipliers.  First, Compton imaging 

theory is briefly presented and provides the context for the calorimetric and position-of-

interaction experiments.  Next, theory of inorganic scintillation is discussed.  Fiber optic 

theory is introduced and position-of-interaction estimation in scintillating fibers is 

reviewed.  Then, a summary of the silicon photomultiplier properties is provided.  

Finally, the chapter concludes with a discussion of signal dispersion and sources of 

uncertainty in scintillation photon counting experiments using silicon photomultipliers. 

1. Compton Imaging 

The vast majority of SNM detection systems employed today merely detect the 

presence of radioactivity.  This capability is not particularly useful in standoff detection if 

no spatial or spectroscopic information about the source is preserved.  In typical 

operating environments, expected count rates from an expected source are low and 

background from terrestrial and cosmic sources is high; the result is high false alarm rates 

using current methods.  For example, the anthracene doped polyvinyl toluene based 

Advanced Spectroscopic Portals currently used as radiation monitors at ports and border 

crossing are frequently triggered by shipments of benign, naturally radioactive materials 

such as bananas, kitty litter, and granite tiles [5].  Unlike simpler spectrometers, Compton 

cameras can not only identify radioisotopes based on the energy of characteristic gamma 

rays, but also form 2-D, 3-D, and even 4-D images of the spatial location of the source 
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[6].  Consequently, Compton imaging has seen wide application in the medical and 

astrophysics imaging communities (e.g. SPECT, MEGA, and COMPTEL) [7].   

1. 1.  Compton Scattering 

Compton cameras reconstruct images of gamma ray source locations by 

exploiting the kinematics of scattering interactions between gamma rays and atomic 

orbital electrons.  This interaction, known as Compton scattering, is the dominant 

mechanism for material interactions for the gamma ray spectrum of interest in SNM 

detection (i.e. 100 keV to 10 MeV).  The angle of gamma ray scatter can be calculated by 

the Compton scatter- formula derived from [8] and given by   

  
 

2

1

0 0 1

cos 1 em c E

E E E
  


,

 (2.1) 

where me is the mass of an electron, c is the speed of light, E0 is the energy of the incident 

gamma ray (which can be estimated or known a priori depending on application) and E1 

is the energy transferred to the electron by the scatter.  If information about the location 

and the amount of energy deposited by Compton scatter interactions is known, then the 

gamma ray source is known to exist on the periphery of a cone of angle θ as shown in 

Fig. 1.   
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Fig. 1. Compton scatter angle and back projection illustration.  When energy and interaction 

position information of a Compton scatter event is known, the scatter angle can be 

computed by (2.1).  The source of the gamma ray is known to exist on the periphery of a 

cone about θ.  As more observations are made, more conic frustums accumulate on a back-

projected source plane to form an image.  Correlated measurements result in intersections 

of these conic frustums which appear as bright pixels, representing the source location.  

Typically, Compton cameras are constructed using multiple detectors in well 

characterized geometries.  The first Compton scatter interaction occurs in the primary 

detector.  The recoil electron from this interaction will deposit its energy in a short 

distance by further ionization of the detector material, producing a measurable signal 

proportional to the energy lost by the incident gamma ray.  Under optimal circumstances, 

the scattered gamma ray will then deposit its remaining energy in a second detector via 

the photoelectric absorptive process which can be measured similarly to the recoil 

electron.  By (2.1), the source is known to exist on the periphery of a backprojected conic 

frustum about θ.  As more source gamma rays are observed, backprojected conic 

frustums accumulate and  intersect on the image plane, thereby forming an image of the 
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source.  Advanced Compton imaging methods can reconstruct images from multiple 

scattering interactions [6].  Interestingly, if the recoil electron’s direction can be 

measured, the source location can be back projected to a particular arc segment of the 

periphery of the cone shown in Fig. 1 and therefore reduce the number of gamma rays 

required to generate a source image [9].  This phenomenon, if exploitable, proves 

valuable in SNM detection problems at standoff distances, where relatively few source 

photons are available. 

Various types of radiation detectors can be used in Compton imaging (e.g. 

pixilated high purity germanium diodes, cadmium-zinc-telluride arrays, scintillator 

arrays, etc.).  However, the recent advances in inorganic fiber scintillator and pixilated 

solid-state photosensor technologies provide a unique opportunity to develop efficient 

and inherently precise particle tracking detectors.  An inorganic scintillating fiber based 

camera has the potential to be extremely robust in terms of both physicochemical stability 

and operational implementation.  Coupled with new, low power solid-state silicon 

photomultipliers, scintillating fibers provide an inexpensive, lightweight, modular, and 

potentially revolutionizing detector system which could be deployed on a variety of 

platforms (e.g. unmanned aerial vehicles, oil rigs or ocean buoys, portal monitors, etc.) 

for remote sensing of SNM.  For a more detailed treatment of Compton imaging, the 

reader is referred to [6]. 

1. 2.  Compton Camera Directionality 

In addition to inherently precise 2-D position-of-interaction resolution, a Compton 

camera made from scintillating fibers can be arranged to exploit preferential scattering 

directions of the particular gamma rays of interest.  Although any scattering angle can 
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satisfy (2.1), the gamma ray scattering angles are heavily dependent upon incident 

gamma ray energy and are anisotropic in distribution.  The Compton scattering angular 

distribution, known as the differential scattering cross-section, is described by the Klein-

Nishina formula,   

 
 

 

 

2 222

2

1 cos( )1 1 cos ( )
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d
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                       ,

 (2.2) 

where /d d 

 
is the differential scattering cross-section,   is the ratio of incident 

gamma ray energy to the rest mass energy of the electron, and   is the angle between the 

incident and scattered gamma ray.  The Klein-Nishina formula, as presented here, 

assumes scattering with free electrons at rest.  In reality, bound atomic electrons are in 

motion with some small (i.e. relative to the gamma energy) kinetic energy; the result is 

Doppler broadening of the scattering interactions.  Ignoring this effect, the distribution of 

scattering angles is shown for a variety of incident gamma ray energies in Fig. 2. 
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Fig. 2. The differential scattering cross-sections as a function of angle are given by the Klein-

Nishina formula, shown here for a Z=32 target at various gamma ray energies in the regime 

of interest.  It is noteworthy that higher energy photons tend to preferentially scatter in a  

forward direction.  This phenomenon can be exploited when designing the Compton camera 

for a standoff application. 

Importantly, higher energy gamma rays tend to scatter in a forward direction 

while lower energy gamma rays scatter forward and backward with near equal 

probability.  Using long narrow scintillating fibers in a clever configuration, the Compton 

camera may exploit these properties for gamma ray energies of interest.  That is, the 

camera can be arranged with some directionality, essentially providing gain by increasing 

the likelihood of measuring signal while reducing noise from background counts.  A 

conceptual illustration of this effect in a scintillating fiber bundle Compton camera is 

shown in Fig. 3. 
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Fig. 3. A conceptual illustration of a fiber bundle Compton camera is shown.  High energy 

gamma rays preferentially forward scatter, in accordance with the Klein-Nishina formula.  

Thus, directivity is gained by effectively increasing gamma path length in bulk detector 

material along the fiber axis.  Notice how the hypothetical cosmic gamma ray passes 

through the detector without interacting while the source gamma ray Compton scatters and 

absorbs in two different scintillating fibers. 

2. Radiation Detection Using Scintillators 

This section discusses scintillators, their mechanisms, and their use as radiation 

detectors.  The process of scintillation is the conversion of energy from an incident 

ionizing quantum (e.g. an X or gamma ray, a high energy particle, or even an ultraviolet 

photon of sufficient energy to ionize atoms) into a large number of visible photons.  The 

two main classes of scintillators, organic and inorganic, are separated by their chemical 

structure and, thus, their scintillation mechanisms.  Fundamentally, both types of 

scintillators behave similarly.  Atoms are ionized by incident radiation via photoelectric, 

Compton, pair-production (i.e. gamma conversion), and Auger effects or by elastic 
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scattering with charged or neutral particles.  The fast secondary electrons (e.g. δ-rays) 

produce an avalanche of tertiary electrons which thermalize and de-excite via 

fluorescence and phosphorescence.  The details of these processes, however, in the two 

scintillator classes are somewhat different and more complex.  Although organic 

scintillators offer some useful properties (e.g. fast decay times and inexpensive, quality 

fiber packaging), the focus of this research is on the latter of these two scintillator classes 

due to their greater stopping power, larger light yields, and novelty as a detection 

medium. 

2. 1.  Inorganic Scintillation Mechanisms 

The physical mechanisms of scintillation in inorganic materials are best explained 

using models derived from the solid-state physics of crystal lattice structures.  That is, 

unlike the organic materials, inorganic scintillators have wide energy gaps between the 

valence and conduction electron bands which are characteristic of the crystal constituents 

and their lattice structure.  Between these bands is a forbidden region in which no 

electronic states can exist in a pure crystal lattice.  As incident radiation and the 

subsequent δ-rays ionize the atoms in the crystal, electrons are excited into the 

conduction band leaving behind an equal number of holes in the valence band.  Both 

electrons and holes are free to migrate within the lattice [10].  In reality, impurities, 

activators (i.e. intentional impurities) and defects (e.g. missing or misplaced atoms) alter 

the energy band gap structure of the crystal by forming charge carrier traps; their 

presence alters the luminescence properties of the crystal.  An illustration of the band gap 

and luminescence processes of an inorganic scintillating crystal is shown in Fig. 4. 



 

12 
 

 

Fig. 4. A generic band diagram of an inorganic crystal scintillator is illustrated.  The electrons 

and holes can annihilate via at activator or self-trapped exciton (STE) sites which are 

responsible for the extrinsic and intrinsic luminescence, respectively, of the crystal.  

2. 2.  Intrinsic Luminescence of Inorganic Scintillators 

In an ideal pure crystal, these electron-hole pairs would eventually thermalize, 

thereby forming free excitons (i.e. electron-hole pairs which migrate together through the 

crystal attracted by Coulomb forces) which eventually annihilate producing a 

characteristic photon with energy equal to the band-gap energy.  By the nature of the 

wide band-gap, this photon is in the ultraviolet spectrum and would be absorbed and re-

emitted many times before eventually being transported out of the crystal.  Measurement 

of these UV photons would require special materials (e.g. fused silica or quartz glass) to 

extend the spectral range of most PMTs [8]. 

In a real crystal, even one with no impurities, point defects (e.g. lattice vacancies 

and misplaced atoms called anti-site defects) cause charge carrier traps.  These traps are 

problematic for several reasons and, of course, their effects are only exacerbated when 

crystal impurities are introduced.  For example, deep traps can form stable color centers 

which cause optical absorption in otherwise clear crystals.  Additionally, shallow traps 
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may release carriers by thermal processes, but can slow the luminescence decay of the 

scintillator.  This slow decay is commonly referred to as “afterglow.”   

In ionic crystals where electron-phonon interactions are strong, free exciton 

migration can cause lattice distortions in their vicinity [11].  If sufficiently high in energy, 

these distortions immobilize excitons which become “self-trapped” and decay via 

radiative (e.g. UV photon emission) or non-radiative processes (e.g. thermal heating due 

to phonon interactions, sometimes called “quenching”) [8] [11] [12] [13].   

Self-trapped exciton sites play an important role in the “intrinsic luminescence” of 

pure inorganic scintillators.  For example, pure NaI has exceptionally intense and fast 

intrinsic luminescence properties, especially at low temperatures, due to the stability of 

these recombination centers [14].  As another example, the alkaline-earth halides such as 

the XF2 (where X can be Ca, Sr, or Ba) scintillators exhibit relatively high intrinsic and 

remarkably fast light yields due to a large number of meta-stable self-trapped exciton 

recombination centers [10].  Additionally, the role of self-trapped exciton luminescence 

has also been shown to affect the “extrinsic luminescence” of activated inorganic 

scintillators [13]. 

2. 3.  Extrinsic Luminescence of Activated Inorganic Scintillators 

In order to produce significant visible light yields, impurities known as activators 

are intentionally added during crystal growth.  The presence of these activators serves to 

locally modify the forbidden gap of the pure lattice.  As excitons (i.e. electrons and holes) 

drift through the crystal lattice, they preferentially recombine at the local activator sites 

known as “luminescence centers”.  The specific type and concentration of activators are 

carefully chosen to optimize the emission properties of various materials.  The type of 
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activator and crystal structure alters the emission spectrum by shifting it into the visible 

region; this property is known as “extrinsic luminescence”.  The quantity of activators in 

the crystal affects its scintillation efficiency.  If too few recombination centers exist, 

excitons saturate the activator sites and are more likely to be quenched (i.e. decay 

non-radiatively).  Similarly, the presence of too many activator ions can result in 

aggregates of activator sites which can also form deep carrier traps, effectively increasing 

the probability for quenching and removing the carriers from the scintillation process 

[11].  Additionally, excess activator ions can increase the self-absorption property of the 

crystal which results in a Stokes shift and reduces overall intensity of the detected 

luminescence spectrum [15]. 

Finally, the extrinsic luminescence of the scintillator occurs upon recombination 

at the luminescence centers as a result of the either direct electronic transitions of the 

activator or transitions between the activator and crystal.  Of particular interest is the 

rapid 5d-4f interconfiguration transition of the Ce
3+

 ion.  Cerium is used in self-activated 

crystals (e.g. CeF3) and is a popular activator in many recent oxide based inorganic 

scintillators because of this transition which produces high light yields with short decay 

times [10].   

2. 4.  Light Yield of Inorganic Scintillators 

The scintillation properties of principal importance to the experimentalist include, 

first and foremost, light yield, conversion efficiency, fluorescence decay time, afterglow, 

optical clarity, refractive index, chemical attributes (e.g. effective Z of the material, 

stability in atmosphere, etc.), and physical attributes (e.g. density, achievable size, 

mechanical stability, etc.).  All of these properties are important in selecting the 
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appropriate scintillator for the experiment; however, the most essential property is 

obviously the efficient conversion of ionizing energy into visible light.  The light yield, 

L , is normally reported as the number of photons, phN , per unit of ionizing energy, E .  

For a full discussion of the efficiency of scintillation conversion including its relationship 

to the band gap energy, the reader is referred to [10]. 

The process of converting ionizing radiation to visible light is non-linear in 

inorganic scintillators due to variations in secondary electron production near atomic K 

and L shells at X-ray energies (i.e. below 100 keV) in many inorganic scintillators.  This 

property was first observe and studied in NaI:Tl as early as the 1960’s [16].  Dorenbos 

summarizes the energy dependent, non-linear response of scintillators and its effect on 

energy resolution in [17].  Indeed, some materials which produce exceptional light yields 

suffer from performance degradation as a result of the statistical fluctuations caused by 

their inherent non-linear response (e.g. LSO:Ce, NaI:Tl, CsI:Na).  Other inorganic 

scintillating materials do not seem to suffer from these non-linearities and can have 

superior intrinsic energy resolution compared to brighter scintillators (e.g. BaF2, 

YAP:Ce) [17].  Interestingly, this phenomenon has been shown to affect chemically 

similar materials differently (e.g. YAP:Ce compared to YAG:Ce) suggesting 

proportionality is lattice structure dependent.  Yet, chemically different, but structurally 

similar lattices have also shown the same behavior (e.g. LuAP:Ce vs YAP:Ce) [18]and 

[19].  Non-linearity in scintillator response is an ongoing area of research. 
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2. 5.  Scintillation Kinematics 

The fluorescence decay time, the next important property of a scintillator, is most 

often described by a simple exponential or a summation of multiple exponential decays 

which typically correspond to the radiant transition times of the activator.  A typical 

scintillator with a single dominant emission flux profile,  t , can be described by 

    0 exp
t

t 


 
  

 
, (2.3) 

where   is the decay time constant of the luminescence center. 

Often, however, the decay kinetics are more complicated and depend on 

parameters such as temperature and type of incident radiation [20].  In most applications, 

fast decay times are desirable to facilitate high count rates and increase signal-to-noise 

ratios.  Luminescence theory states that the electric dipole transitions are the most 

probable mode of de-excitation with a radiative rate 
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where c is the vacuum speed of light, em  and e  are the mass and charge of an electron, 

  is the wavelength of the transition, n  is the refractive index of the material, and f  is 

the oscillator strength of the transition [10].  From (2.4) it can be seen that the decay time 

constant,  , is proportional to the square of the emission wavelength.  This indicates that 

higher energy photons are emitted faster from the electric dipole transitions which 

explains the extremely fast decay associated with intrinsic luminescence of crystals in the 

UV.   
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Since the emission wavelength can be assumed to be inversely proportional to the 

band gap energy, gE , it can be shown that 1/ gL E  and 
21/ gE 
 
[10].  Since L is 

desired to be large and   small, it is obvious that these properties are in competition.  In 

search of an optimal balance between yield and decay time, Birks proposed a figure of 

merit, 
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Birks’ figure of merit is the ratio of total scintillation light output, SL , to  .  By 

definition, M  is equivalent to the ratio of peak scintillation intensity (i.e. the peak 

number of scintillation photons per second) to incident ionizing energy for simple decay 

profiles.  This figure of merit is essentially a measure of signal-to-noise. 

If a scintillator has multiple decay components, it might be described by a series 

of weighted sums of exponential decays.  However, it is important to note that as higher 

order decay kinematics influence scintillation time profiles, such mathematical 

descriptions may be less of a description of luminescence mechanisms than an empirical 

data fit and, thus, may lose their physical meaning.  That is to say, physical conclusions 

should not be drawn from decay profile fits alone since the physical mechanisms of 

luminescence may be obscured by more complex physics.  For example, the decay profile 

of a scintillator is heavily dependent on the role of thermal traps and temperature [20].  

At room temperature, afterglow is caused by charge carriers which are released via 

thermal excitation from shallow traps from which they could not escape at lower 

temperatures.  Similarly, at high temperatures, thermal quenching (i.e. non-radiative 
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decay) increases and drastically alters the time profile of scintillation and reduces overall 

scintillation yield.   

2. 6.  Photon Transport in Scintillators 

At this point, the discussion shifts focus from the photon production mechanisms 

to the transport.  As mentioned, the presence of the activators serves to increase 

scintillation yield but also to shift the emission spectrum to energies below the band gap 

where the crystal is essentially transparent.  Of course, there is some optical absorption, 

mostly due to overlap between the activator emission and absorption spectra, see Fig. 5.  

However, in materials with a well engineered activator concentrations, self-absorption 

from the activator is limited and absorption results primarily from optical opacity due to 

impurities and point defects in the lattice which form color centers.  Other optical defects 

include cracks, gaps (e.g. air bubbles), and roughened surfaces which cause unnecessary 

reflections and refractions.  These factors which affect optical clarity are consequences of 

crystal growth techniques. 
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Fig. 5. The absorption or excitation (orange) and emission (red) properties of s ingle crystal 

fiber YAG:Ce is shown.  The overlap of emission and absorption curves indicates self -

absorption.  The data shown is adapted from [21]. 

Other factors are beyond the control of the crystal engineer.  As mentioned, the 

activator emission can be absorbed by activator sites themselves, “particularly for Ce 

based and Eu doped crystals because of the overlap of the f-d and emission of the d-f 

bands” [10].  Efforts to control the attenuation of light within inorganic scintillators by 

varying types and amounts of dopants, as well as surface treatments, have proven 

successful for applications in depth-of-interaction experiments [22]. 

Scintillation photon transport can be treated using classical geometric optical 

theory; that is, the scintillation photons are treated as isotropically distributed and 

randomly polarized and are subject to refractions and reflections.  Snell’s Law, 

 1 1 0 0sin sinn n  , (2.6) 

describes the refraction of light at interfaces between two materials, denoted by 

subscripts, of different refractive indices, 
in , where   is angle from normal to the 

materials interface.   By definition, the index of refraction of a material is the ratio 
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between the speed of light in a vacuum to the speed of light in that material.  Since most 

activated inorganic scintillators have relatively high refractive indices, typically above 

1.8, surface treatment is essential to efficient transport of scintillation photons to a 

photodetector [8].   

High indices of refraction cause several problems for light collection.  First, most 

photodetectors have some sort of optical coating (e.g. glass, 1.5n  ) for protection.  This 

change from higher to lower refractive index allows for the phenomenon of total internal 

reflection.  The critical angle is the angle at which incident optical rays are totally 

reflected back into the material and is defined by 

 1

0

arcsinc

n

n
  . (2.7) 

Note that the light must travel from material 0 to material 1, and 0n  must have a larger 

refractive index for total internal reflection to occur. 

Internal reflection losses can be substantial if not mitigated.  As an example, the 

critical angle for scintillating material with 0 1.8n   is approximately 56° when 

interfacing with glass and 33° when interfacing with air.  Assuming uniform angular 

distribution of light on the interface, the loss incurred from total internal reflection is 

cos c , or about 56% and 83% respectively.  Consequently, index matching fluid such as 

highly viscous transparent silicon oil or optical epoxies are used to mitigate these total 

internal reflection losses. 

In addition to refraction, optical photons undergo Fresnel reflections which occur 

at interfaces between materials of different refractive indices.  In classical 

electromagnetic theory, Fresnel’s equations describe the relative fraction of transmitted 
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and reflected s-polarized and p-polarized electromagnetic waves at dielectric interfaces.  

The overall reflection intensity, R , is given by quadrature sum of the reflection 

coefficients, sr and  pr , 
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i t i t

R r r
   

   

    
              

, (2.8) 

where i  is the incident angle of the electromagnetic wave, and t  is the angle of 

transmission which follows Snell’s law.  In high refractive index materials and especially 

at large, but less than critical incident angles, Fresnel reflections can be significant as 

shown in Fig. 6. 
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Fig. 6. Fresnel reflections are shown for a typical inorganic scintillator interfacing with glass 

(top) and air (bottom).  Notice the critical angles are shown as asymptotes.  While glass 

interfaces result in nearly negligible Fresnel reflections for much of the angular spectrum, 

air interfaces have a minimum reflection intensity in excess of 8%. 

To aid in the efficient collection of photons which undergo many reflections 

within the scintillator, commercial inorganic scintillators are typically coated (on all but 

one surface) with a diffuse reflector such as Al2O3 or MgO powder which offer 

reflectivity coefficients up to 0.99 [10].  Diffuse reflectors follow Lambert’s cosine law 

which states that the observed radiant reflection intensity is directly proportional to the 

cosine of the angle between the observer and the surface normal.  This is in contrast to 

specular reflections which follows the familiar law of reflection.  Somewhat against 
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intuition, diffuse reflection allows better scintillation photon collection because it breaks 

the symmetry which might otherwise trap optical rays in trajectories which would never 

be detected (e.g. internally reflected rays). 

One final consideration should be given to high refractive index scintillators with 

long optical path lengths.  Recalling that the refractive index is by definition a measure of 

the speed of the photons, light in a material with 0 1.8n   travels nearly twice as slowly 

as in vacuum.  Therefore, it can take nearly a nanosecond for the photons to travel 15 cm.  

Considering the large numbers of reflections which the scintillation photons encounter 

before collection, there can be a non-negligible time delay which is dependent on the 

position of photon creation. 

2. 7.  Physicochemical Properties of Inorganic Scintillators 

The final scintillator properties to be discussed are arguably the most important 

from an engineering and application perspective: the physical and chemical properties.  

Ideally, scintillator crystals should be rugged (i.e. mechanical and thermal shock 

resistant), hard, and chemically inert.  Some crystals are hygroscopic and must be 

“canned” to avoid contact with water in the atmosphere.  Crystals should be able to be 

grown in large dimensions and shaped, ground, and polished with conventional tools 

without cleaving.  Above all, crystals should be dense and contain high-Z materials to 

increase the radiation stopping power of the scintillator. 

3. Scintillating Fibers 

Fiber optic theory is the study of light guidance in dielectrics and has been a 

widely studied field since as early as 1854 when John Tyndall demonstrated that light 
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curved within a stream of water.  Like the water, optical fibers exploit the principle of 

internal reflection to trap light in a core of high refractive index material within a 

cladding of lower refractive index.  This cladding is thin and can be any dielectric with a 

lower refractive index, including air.  Fiber scintillators are a popular detection material 

in high-energy particle tracking experiments because of their inherently achievable two 

dimensional position resolution when coupled to pixilated detectors.  Fiber scintillators 

are thin (e.g. 250-500 µm), shaped in convenient geometries for ray propagation 

(typically circular or square cross-sections), and are usually made from scintillating 

plastics or glass because of their optical properties [8].  Recently, inorganic crystal 

scintillators have been grown into thin fiber shapes using the micro-pulling-down growth 

technique [3].   

3. 1.  Light Formation and Propagation in Scintillating Fibers 

When incident radiation causes scintillation within these fibers, a fraction of light 

(inversely proportional to the ratio of refractive indices between cladding and core) is 

trapped within the fiber and propagates toward either end.  The total fraction of light 

trapped in a scintillating fiber is given by 
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. (2.9) 

From (2.9), it can be seen that a high core refractive index results in a high 

trapping efficiency.  However essential, trapping scintillation light is not the goal.  

Rather, the goal is to “pipe” scintillation light to a photosensor.  Therefore, the 
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scintillation light must be able to escape the fiber end rather than be totally internally 

reflected and forever trapped.  Conventional scintillating fibers have relatively high 

cladding-to-core refractive index ratios (e.g. Saint-Gobain BCF plastic fiber scintillators,

/ 1.5 /1.6 0.94clad coren n   ) [23].  Consequently, the critical angles are quite large and 

trapping efficiencies are very low.  The result is, disregarding propagation losses, fully 

efficient fiber end escaping efficiencies.  However, for inorganic fiber crystals of much 

lower /clad coren n  ratios, the escaping efficiencies can be quite low and can suffer from 

the same internal reflection losses as their bulk crystal counterparts. 

Only light arriving at the fiber end at an incident angle that is less than the critical 

angle can escape the fiber and be detected.  Assuming the fiber end plane is orthogonal to 

the fiber axis, not every trapped ray can escape, only rays propagating between 0° and c  

about the fiber axis will be directly detected.  This assumes that 45c   ; otherwise all 

trapped rays will escape as mentioned with regard to traditional scintillating fibers with 

poor trapping efficiencies. Rays propagating between 90T c    and c  from the axis 

will be totally trapped in the fiber, as illustrated in Fig. 7.  The majority of these totally 

trapped rays are lost through optical absorption in the material, but some may also 

undergo Rayleigh scattering (due to small, local density changes in the material) or 

experience reflections off rough surfaces, cracks, or defects and may be detected.   
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Fig. 7. Cross-sectional view of a scintillating fiber illustrates the effects of photon trapping and 

escape due to internal reflections.  Mentally rotating the 2-D image 2π about the fiber axis 

gives the full picture.  Note that refractions are not drawn to scale for illustrative purposes.  

In Fig. 7, the escaping ring is drawn as cones for simplicity but are in reality a 

tapered ring about the fiber axis since the scintillation photons are not confined to a two 

dimensional plane.  There is also, in reality, another trapping cone with opposite 

orientation along the fiber axis.  It is important to note that the escaping angles at the 

original site and fiber ends are identical. 

To quantify this escape efficiency, one can assume, by symmetry in the mean, that 

half of the trapped scintillation photons travel toward each fiber end and 45c   .  Then 

the fraction of photons which escape a single fiber end is given by 
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. (2.10) 

For 45c   , the fraction of detectable light no longer depends on the quantity of 

light trapped in the fiber.  However, if an index matching fluid were used at the fiber end, 

the critical angle could be increased to allow more photons to escape the fiber into a 

photosensor.  Without the aid of index matching material, the absolute upper limit of 

escape efficiency for any fiber scintillator is 14.6% per fiber end.  The graph in Fig. 8 

shows the improvement in escape efficiency as the refractive indices are matched. 
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Fig. 8. The effect of index matching fluid, n1, on the escape efficiency of light trapped in a 

scintillating fiber, n0.  Recall that the maximum escape efficiency for a single fiber end is 

50% of the total trapped light. 

Photons that do escape the fiber ends are refracted according to Snell’s law.  Due 

to their relatively high refractive index, light which exits scintillating fibers (indeed, 

optical fibers in general) is emitted in a cone about the half angle, launch , which may also 

be called the “launch angle.”  A property closely related to the launch angle is the 

“numerical aperture” (NA) of the fiber which is described by 

 
2 2sin launch core cladNA n n n    (2.11) 

where n  is the refractive index of the external medium, typically air.  Large values of NA 

represent large launch angles and, thus, larger acceptance cones.  The NA of a 

scintillating fiber affects the direction of escaping photons at the fiber ends.  Ideally, the 

launch angle would perfectly match the angle subtended by the photosensitive surface.  

For the case where a 2coren   and 1cladn  , such as an inorganic fiber crystal using air 

for cladding, the NA value reaches its maximum.  That is, the launch angle reaches 90° 
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which is the maximum for any fiber.   This implies the escape efficiency is less than 

unity; in other words, these conditions result in some fraction of totally trapped light.  In 

this case, very little of the escaping light will be normally incident on the photosensor.  

Under certain conditions, the use of an index matching fluid can, in addition to improving 

the escape efficiency, redirect the escaping rays toward normal incidence.  Such is the 

case when moving from a high index fiber (e.g. n=1.8), to a moderately low index fluid 

(e.g. n=1.4), to a medium index detector window (e.g. n=1.5).  Without the index 

matching fluid, the inevitable fiber-air interface would cause severe refraction and 

potential losses especially when using small active detector areas (e.g. a silicon 

photomultiplier). 

Light propagates in two distinct modes within scintillating fibers.  Meridional rays 

pass through the center of the fiber; these rays are only produced when the scintillation 

photon production occurs near the center.  Meridional rays travel quickly and efficiently 

(i.e. without much loss).  For these reasons, meridional rays are desired in fiber optic 

communication using single mode fibers.  Skew rays originate away from the fiber center 

and propagate along spiral paths.  Skew rays have much longer travel times and path 

lengths and tend to travel along the outer rim of the fiber.  Therefore, the probability for 

loss due to absorption and scatter is increased, as is the light collection time.   

Precision timing is often important for fiber scintillator readouts since it contains 

position information about the interaction.  If the time difference of arrival at the two 

fiber ends is resolvable, it can be used to determine the position-of-interaction; such 

methods are known as “time-of-flight” and have been used in particle tracking 

experiments using long scintillating fibers [24][25]. 
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Ray tracing Monte Carlo software (e.g. DETECT2000) can be a useful tool for 

modeling light propagation in scintillating fibers.  The illustration shown in Fig. 9 depicts 

the results of a scintillation event in a bundle of organic scintillating fibers.   

 

Fig. 9. The results of a scintillation event in a bundle of organic fibers modeled in GEANT4  

[26] are shown.  Green tracks represent primary ionizing radiation.  Red tracks are 

secondary electrons which produce yellow scintillation photons.  This also shows the 

efficacy of Compton recoil electron tracks being observed in neighboring organic 

scintillating fibers. 

Meridional rays are seen in the lowest fiber where the interaction occurred in the center 

while all other fibers only contain skew rays which propagate along the outer rim of the 

fiber core.  Since meridional rays can only be produced about the center of a round fiber, 

skew rays are more likely to be produced by scintillation.  This presents a potentially 

problematic scenario for scintillation detection when using a silicon photomultiplier.  The 

details of these devices are discussed in Section 5. 1. below, but for the continuity of this 

discussion they are briefly described here.  
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The silicon photomultiplier is a pixilated array of as many as 1600 avalanche 

photodiodes per mm
2
 operating in the Geiger regime.  Each pixel essentially discharges a 

binary output when struck by a visible light photon; the array pixels collectively act as 

proportional detector device.  Pixels that fire upon detection of a photon must recharge 

(over the course of a few or few tens of ns), resulting in a paralyzable dead-time.  This 

leads to one type of device saturation.  If large quantities of light from skew rays are 

incident upon relatively few pixels in a short amount of time (e.g. the decay time of 

organic scintillators is typically less than the pixel dead-time), the device can saturate and 

the signal response will be non-proportional. 

3. 2.  Estimating Energy and Position Resolution in Scintillating Fibers 

The time-of-flight method discussed above requires long, transparent fibers to 

determine position-of-interaction; this method is impractical for short and/or relatively 

high-loss scintillating fibers such as inorganic fiber-shaped crystals.  However, another 

convenient method for obtaining position-of-interaction information in fiber scintillators 

is derived from self-attenuation within the material.  Knoll describes this property 

(derived from Beer’s Law) as “attenuation length” which relates the intensity of light (i.e. 

the number of photons) measured at one fiber end to the light yield at the interaction site 

using an exponential function such that 

 0
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, (2.12) 

where 0N  is the estimate of the total amount of trapped scintillation light, x is the 

distance between the interaction and the readout which will be determined on a per event 
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basis, and   is the known attenuation length of the material.  Typical values for   range 

from tens to hundreds of centimeters [8].   

Due to the Stokes shift in most scintillating materials, as path lengths increase the 

spectral components will be red shifted.  Inorganic crystals are typically quite transparent 

to optical wavelengths.  However, the absorption and re-emission (i.e. isotropic emission) 

of scintillation photons by activator sites and impurities will undoubtedly distort the 

scintillation signal as it propagates through the fiber, potentially decreasing the crystal 

attenuation length.  For inorganic crystals with short (i.e. relative to the optical path 

length to the detector) self-absorption attenuation lengths, other mechanisms such as 

scattering and absorption from crystal defects (e.g. cracks, micro-bubbles, gaps, color 

centers, etc.) can dominate the light attenuation process.  These processes may be more 

difficult to model than simple exponential functions.  For this reason, high quality 

crystals are important for position-of-interaction measurements.  For the purposes of this 

research, these higher order effects are neglected. 

Since the intensity of the measured scintillation pulse now depends on interaction 

position by (2.12), if   and 0N  are known or can be measured, one can estimate the 

interaction location using dual fiber end readout by 
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, (2.13) 

where x  is the one-dimensional estimate of the position-of-interaction as measured from 

the end nearest the first detector, l  is the total fiber length as shown in Fig. 10, 2 1/N N  is 

the ratio of relative signal amplitudes (i.e. the ratio of estimated number of photons) as 
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measured at the ends of the fiber.  Likewise, the total trapped scintillation light, which is 

proportional to the energy deposited, can be estimated by 

 0 1 2 exp
2

l
N N N



 
  

 
. (2.14) 

 

Fig. 10. Double end fiber readout parameters are illustrated.  The position of interaction occurs 

at a distance x from end #1 and a position l -x from end #2.  The resulting light yields are 

N1 and N2, respectively. 

In reality, the true number of scintillation photons is a Poisson distributed random 

variable.  As such, the energy deposited can never be known exactly and must be 

estimated by photon counting, typically involving secondary processes such as 

photoelectron multiplication.  If the response function of the photosensor is linear (i.e. the 

number of photoelectrons produced is directly proportional to the incident number of 

scintillation photons), then 1,2N  can be understood as the number of photoelectrons 

instead of photons, although their statistics are not necessarily the same.  

Using (2.13) and (2.14) and estimates of their uncertainties, the ideal energy and 

position resolution can be computed on an event-by-event basis.  Let energy resolution be 

defined as the relative standard deviation of 0N , as defined by (2.14), which is directly 

related to the energy deposition of the interaction by 0N L E  .  Let position resolution 

be defined as the standard deviation of the axial position, as defined by (2.13).  For 
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simplicity, it is assumed that   is known and additional sources of noise (e.g. detector 

excess noise factor, electronics noise, etc.) are ignored here.   

The variance of any function of multiple independent random variables with small 

and symmetric errors can be calculated using 
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where 
2

ix  is the variance of the i
th

 independent variable [8].  Clearly, the values of 1N  

and 2N  are related by 0N .  However, the values are indeed random variables and do not 

depend on each other, hence 1N  and 2N  are conditionally independent and (2.15) can be 

applied to both (2.13) and (2.14) to solve for the ideal position and energy resolutions on 

an event-by-event basis.  Doing so results in 
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and 
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Dividing (2.17) by 
2E  and taking the square root gives the energy resolution, 
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which can be further reduced to  
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if 1,2N  are Poisson distributed.  Likewise, further reduction of (2.16) under Poisson 

statistics gives 
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from which the position resolution (under the assumption of Poisson distributed 1,2N ) in 

terms of the estimated total number of trapped scintillation photons is given by 
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 From (2.19) and (2.21) it is clear that increasing scintillation yield improves both the 

achievable position and energy resolutions.  Another intuitive conclusion can be drawn 

from (2.19) and (2.21).  As   increases (i.e. the crystal become more opaque), the 

position resolution increases but only so long as there are sufficient photon intensities to 

predict 0N .  Unfortunately, the energy resolution is degraded as more light is attenuated.  

These competing factors result in a challenging optimization problem in which the 

attenuation length (or fiber length) must be tuned for best energy and position resolution 

for the application at hand.  

4. Scintillator Materials Under Study 

Since the discovery of X-rays by Röntgen in 1895, various inorganic scintillating 

materials have been discovered in abundance.  Some common crystals include alkali and 

alkaline-earth halides (e.g. NaI:Tl, BaF2, etc.), chalcogenides (e.g. ZnS:Ag, CdS:Te), 

tungstates (e.g. CdWO4), simple oxides (e.g. BeO, ZnO, etc.), and complex oxides (e.g. 



 

36 
 

aluminates, silicates, germinates, etc.).  Rather than describe the properties of the various 

scintillator materials, the discussion will instead focus on materials used in this research, 

specifically cerium doped yttrium aluminum garnet (YAG:Ce) and other similar oxides.  

For a through description of the various scintillating materials the reader is referred to  

[8] and  [10]. 

4. 1.  Properties of Rare Earth Garnet Crystals 

Garnet crystals are members of the neosilicate class which have been synthesized 

and widely used for their interesting optical and ferromagnetic properties in numerous 

fields of study.  The relatively complex crystal structure of garnets was first solved by 

Menzer in 1926 [27].  He showed that garnet crystals follow the general formula 

X3Y2(ZO4)3 where X is a divalent cation (e.g. Mg, Mn, Ca, etc.), Y is a trivalent cation 

(e.g. Si), and ZO4 is a large orthosilicate anion compound (e.g. SiO4) [28].  In 1951, 

Yoder and Keith first synthesized a rugged, silicon-free garnet using yttrium and 

aluminum giving rise the enormously popular Nd-doped YAG lasing medium [28].  

Other rare-earths such as gadolinium and lutetium are also substituted for or mixed with 

yttrium in garnets.  Various garnet crystals can readily be grown using the Czochralski, 

Bridgman, or micro-pulling-down methods [28] [29].   

Due in part to their role in the early development of lasing media, single rare-

earth garnet crystals are grown with high purities and optical transparency using mature 

technology [28].  Such conditions provide an ideal arena for scintillator research.  When 

doped with Ce
3+

 ions, rare-earth garnets scintillate quickly and relatively brightly due to 

the allowed 5d-4f electric dipole transitions of the activator [17].  The scintillation 

properties of the YAG:Ce were first studied by Moszynski, et al [30]. 
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4. 2.  Properties of the YAG:Ce Scintillator 

The YAG:Ce scintillator has a fairly wide band gap (7 eV) but produces a unique 

emission spectrum peaked in the green at 550 nm which results from the activator’s 

energy position within the band gap [8] [30].  Due to its relatively low density (4.55 

g/cm
3
) and low Z (e.g. Y=39, effective Z = 35), YAG:Ce is relatively inefficient for 

gamma spectroscopy.  Reported values of the scintillation yield vary significantly (e.g. as 

low as 9,000 to as high as 23,000 photons per MeV, gamma equivalent) with cerium 

concentration, peaking around 0.2 mol% [30] [31].  The decay of the scintillator consists 

of two primary decay constants under gamma irradiation, a short component around 88 ns 

(72% intensity) and a long component around 302ns (28% intensity). 

Interestingly, YAG:Ce light emission depends rather substantially on the type of 

excitation.  Moszynski, et al., report several significant findings.  First, the ratio of total 

scintillation intensity due to alpha particle interactionto that of gamma rays, the α/γ ratio, 

of YAG:Ce is equal to 21% (at 5.4 MeV).  This is reasonably explained as a result of 

activator saturation due to the density of local exciton populations caused by heavy 

charged particle interactions.  Surprisingly, the decay time constants not only decrease 

under alpha irradiation, but the intensities flip.  In their later work Ledziejewski, et al., 

also note that the fast decay component of YAG:Ce under alpha irradiation more closely 

matches the value reported from laser excitation.  Table 1 summarizes the findings of 

Ledziejewski, et al. [32]. 
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Table 1.  Scintillation Properties of YAG:Ce  from [30] and [32]  

Cerium 

Concentration

No. 

Photoelectrons
α/γ Radiation Rise Time

% mol Ce (#/MeV γ ) % Type (ns) Time (ns) Intensity (%) Time (ns) Intensity (%)

NA Laser - 58 100 NA NA

γ 5 87.9 72 302 28

α NA 68.4 34 247 66

γ 10 87.9 72 302 28

α NA 68.4 34 247 66

γ - 105.4 28.5 487.1 71.5

α - 88.9 14.9 458.5 85.1

γ - 115.3 9.2 651.2 90.8

α NA 89.5 11.6 666.4 88.4

0.012 1000 - γ - - - - -

1200

1270

1420

1180

1.08

0.21

0.015

unknown

Fast Decay Component Slow Decay Component

21

21

21

21

 

 

Zorenko, et al, have observed that the decay kinetics phenomenon is only 

prevalent in single crystal and not single crystalline film YAG:Ce and suggest the 

behavior is due to the presence of YAl anti-site defects found in single crystal YAG [13].  

They have shown that the slow UV emission from anti-site defects is strongly absorbed 

by the cerium sites which are often coupled to the anti-site defects.  This radiative 

transfer of energy to the activator by intrinsic emission greatly influences both the rise 

and decay of the YAG:Ce luminescence.  Independently, Selim, et al., have confirmed 

via positron annihilation spectroscopy that Al vacancies are indeed the dominant defects 

in YAG:Ce crystals and have shown significant improvement in energy resolution 

following O annealing and Al diffusion into YAG defect sites [33]. 

In order to explain the observed difference of luminescence decay between 

ionizing and optical radiation excitation, Zych, et al., conducted a series of measurements 

over a wide range of excitation conditions.  They explain that the kinetics associated with 

non-ionizing radiation (i.e. energies less the the 7 eV band gap, such as 450nm laser 

light) differ from ionizing radiation because such low energies only deliver excitation 
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energy directly to the Ce activator ion.  The energy level diagram for YAG:Ce is shown 

in Fig. 11, adapted from [20]. 

 

Fig. 11. YAG:Ce energy level diagram adapted from [20]. 

Such excitation results in a single exponential decay constant of 67 ns, in close agreement 

with the value reported by Moszynski, et al..  However, when excited by 178 nm optical 

radiation (above 7 eV), YAG:Ce shows the distinctive 320 ns slow component.  

Interestingly, the fast component is reduced to 85 ns, in agreement with excitation via 

gamma radiation [20].  Again, this can be explained by the strong Ce absorption of the 

intrinsic luminescence.   

By exciting the crystal with increasing optical energy, Zych, et al., report an 

increasing probability for charge delocalization by observing an increase in fast 

component decay time beginning around 230 nm (5.4 eV) .  Therefore, they attribute this 

time shift to the delocalization and migration of charge away from the excited Ce ions to 
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other sites.  These results were confirmed by photoconductive experiments at the same 

excitation energies [20].   

To explain the mechanism behind these kinetics, Zych, et al., turned to a series of 

time-resolved luminescence experiments over a wide range of temperatures (60-600K) 

during gamma and optical excitation.  They discovered that the radiative decay constant 

(i.e. caused by optical excitation of the Ce ions) is constant across the temperature range.  

However, the effective decay constant (i.e. caused by ionizing excitation) shows complex 

low temperature behavior, decreasing to the radiative decay constant near 150 K before 

increasing to a maximum near 200 K then again decreasing monotonically back to the 

radiative decay constant near 400 K. The intensity of the fast component varies 

complexly as a function of temperature.  Their results can be seen in Table 2.  These 

behaviors are attributed to the trapping levels within the crystal which release or quench 

charge carriers depending on thermal conditions in the lattice.  By mapping the 

thermoluminescence emission profile following X-ray irradiation, they identified as many 

as 11 shallow traps ranging from 0.129 to 0.634 eV.  Thus, Zych, et al., have shown that 

the complex time decay profile of YAG:Ce luminescence is due to the release kinematics 

of shallow traps [20]. 
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Table 2.  Temperature dependent decay kinetics of YAG:Ce as reported in [20]  

 

This kinetic decay behavior has been observed in other rare-earth garnet 

scintillators (e.g. LuAG:Ce) which further confirms the presence of shallow electron 

traps in the garnet structure [34].  Chemically similar crystals such as yttrium aluminum 

pervoskite (YAP:Ce, YAlO3) only exhibit one very fast, 25 ns, decay component [35].   

The scintillation linearity (i.e. the proportionality of scintillation response) of 

YAG:Ce is a fairly good.  A continuous increase in proportionality from 86-100% (with 

respect to light yield at 662 keV) is observed between 14 and 662 keV gamma ray 

energies.  This is less impressive than the chemically similar cousin of YAG:Ce, 

YAP:Ce, which shows exceptional linearity, changing only 6% over the same range [18].  

Yet, other contemporary Ce-doped multiple-component oxide scintillators such as 
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yttrium and/or lutetium oxyorthosilicates (e.g. YSO, LSO, and LYSO) suffer from 

significant non-linear responses (45% from 14-662 keV) [18] [34].  As a result, YAG:Ce 

offers superior energy resolution compared to other brighter scintillators such as (e.g. 

LYSO:Ce, L≈27,000 photons/MeV) [36].  Evidence for this is presented by 

Chewpraditkul, et al., who report the data shown in Fig. 12 and Fig. 13 [34].   

 

Fig. 12. Data adapted from Chewpraditkul illustrating the superior achievable energy 

resolution of YAG:Ce to a brighter scintillator, LYSO:Ce [34]. 
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Fig. 13. Data from Chewpraditkul illustrating the intrinsic resolution of YAG:Ce [34]. 

As previously discussed, this intrinsic energy resolution limitation results from 

absorption processes near L and K-shell energies, and is particularly prominent for higher 

Z atoms, such as lutetium.  This explains the lower energy resolution offered by lutetium 

based oxide scintillators. 

From the intensity of the photopeak in comparison to the Compton edge in 

Fig. 12, it can be concluded that YAG:Ce is an inefficient scintillator.  This is due to its 

low density and low effective Z, which result in a low stopping power.  A similar 

scintillating crystal, LuAG:Ce, has higher light yields, higher effective Z, and higher 

densities than YAG:Ce; thus LuAG:Ce has several key advantages over YAG:Ce.  

However, in addition to the poor intrinsic resolution shown in Fig. 13, LuAG:Ce, as with 

all lutetium based scintillators, suffers from intrinsic background radiation from the 

naturally occurring isotope 
176

Lu which produces about 50 counts/s/g of natural lutetium. 
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Despite resulting in an overall inefficient scintillator material, the low stopping 

power (i.e. low electron density) of YAG:Ce may prove useful in particle tracking 

experiments.  This property may allow tracking of a Compton recoil electron in thin 

scintillating YAG:Ce fibers.  According to the Bethe-Bloch formula for specific energy 

loss, the sum of the collisional (i.e. ionizing and exciting) and radiative losses yield the 

total linear stopping power of a material.  The collisional loss in a material is described in 

[37] by 
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, (2.22) 

where n  is the material electron density in m
-3

,   is the ratio of the particle velocity to 

the speed of light, evI  is the mean ionization potential of the material, and   is the ratio 

of particle energy to its rest mass energy.  The initial constant is a reduction of the natural 

constants as defined by Turner in [37].  The radiative loss term is approximated by  

 
800

eff

rad Coll

Z EdE dE

dx dx

   
    
   

 (2.23) 

where effZ  is the effective atomic number of the material. 

The fast electron total stopping power and range in YAG:Ce has been calculated 

over the energy regime of interest using (2.22) and (2.23) .  The calculations are shown 

graphically in Fig. 14 and Fig. 15 as a function of electron energy. 
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Fig. 14. The fast electron stopping powers in YAG:Ce calculated using the Bethe-Bloch is 

plotted over the energy regime of interest.   

 

Fig. 15. The ranges of fast electrons in YAG:Ce calculated using the Bethe-Bloch formula is 

plotted over the energy regime of interest.  The range values show good agreement and 

provide an expected range of tens to hundreds of microns for typical Compton recoil 

electrons. 
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From Fig. 15, it is clear that a range of tens to hundreds or even thousands of 

microns can be expected from Compton recoil electrons in YAG:Ce.  Certainly, there is 

reasonable probability that such electrons can escape thin fibers (e.g. 400 µm diameter 

fibers which are commercially available [3]).  Tightly packed bundles of fibers may allow 

the tracking of recoil electrons in neighboring fibers.  Of course, this tracking capability 

may have negative implications for energy resolution if electron energy is lost in cladding 

material.  Nonetheless, it is a promising area of research. 

4. 3.  Properties of Fiber Shaped YAG:Ce 

Recent development of the micro-pulling-down (µ-PD) crystal growth technique 

has allowed the growth of shaped fiber single crystals [28].  This technique begins with 

the contact of a seed with the melt drop formed at the capillary die of an iridium crucible.  

The crystal is pulled down through a capillary tube in an argon atmosphere and directly 

annealed using an after heater just below the crucible [38].  The crystal is grown at a rate 

of between 0.1-0.5 mm/min under the control of a computer and CCD camera.  The 

dimensions of the fibers can range from 0.3-3 mm in diameter and 10-100 cm in length 

[21].  These fiber crystals are commercially available in many popular materials such as 

LYSO:Ce, LuAG:Ce, and YAG:Ce [3]. 

Inorganic scintillating fibers have promising properties for medical imaging and 

particle physics applications because of their high light yields and achievable position 

and energy resolutions.  Previous work conducted by Anfré shows excellent spatial 

resolution of particle interactions along fiber lengths using double end readout [36].  

Anfré achieved under 1 cm in position resolution in alpha particle experiments using 
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YAG:Ce and under 5 mm in position resolution in gamma ray experiments using 

LYSO:Ce fibers [36] [21]. 

Anfré reported that the YAG:Ce fibers had a particularly weak scintillation yield 

of ~10,000 photons per MeV for gammas and ~800 photons per MeV alpha particles 

[21].  This light yield is low in comparison to other values in literature for gammas, but 

most surprisingly, shows an α/γ ratio of around 8%, much less than reported by 

Moszynksi, et al. [30].  While Anfré attributes this loss to the interaction mechanisms of 

alphas in the YAG crystal, another interesting characteristic of the fiber crystal may be to 

blame. 

During the growth of fiber crystals, convective currents distribute the activator 

ions with a radial gradient over the cross-section of the crystal during cooling [28].  

Simura, et al., observed this in experiments conducted with µ-PD growth of YAG doped 

with Nd, Cr, Yb, and Ce.  The Ce doped YAG data collected by Simura et al. shown in 

Fig. 16 which agrees with the overall concentration reported by Anfré, shown in Fig. 17.  

Both, however, report excellent dopant concentration homogeneity along the length of 

the fiber crystal [39]. 

 

Fig. 16. Radial concentration of cerium dopant atoms in YAG crystals grown by µ-PD.  Data 

adapted from [39]. 
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Fig. 17. Independent results confirming the concave radial distribution cerium dopant atoms in 

YAG crystals grown by µ-PD.  Image adapted from [21].  No absolute, quantitative values 

of concentration were reported. 

Simura, et al., claim that the data they present is misleading and that inhomogeneities 

of Ce concentrations are actually worse than reported due to the presence of inclusions 

near the rim of the fiber [39].  If this is the case, then perhaps an explanation for the 

lower than expected α/γ ratio observed in Anfré’s fiber crystal is a result of the photon 

production near the fiber rim (due to the short range of alphas in YAG) which leads to 

skew optical rays that are confined to spiral trajectories along the outer rim of the fiber.   

Similar results have been presented by Dujardin, et al., using confocal 

photoluminescence spectroscopy of 2 mm diameter LuAG:Ce fibers grown by Fibercryst 

[40].  Their results are shown in Fig. 18. 



 

49 
 

 

Fig. 18. Confocal photoluminescence spectroscopy results of cerium activator radial 

concentration in LuAG:Ce fibers as presented by Dujardin, et al., are shown [40]. 

The evidence of strong radial dispersion of cerium activator sites in fiber crystals 

grown via µ-PD is abundant.  If, indeed, there are inclusions, defects, impurities, or even 

rough surfaces near the rim of the fiber, these flaws undoubtedly will result in light 

attenuation, scattering, or escape as well as the absorption and non-radiative decay within 

other activator sites which could explain the poorer than expected performance of Anfré’s 

fiber. 

5. Photon Detection Techniques 

Conventional photomultiplier tubes (PMTs) are the workhorse of scintillator 

readout.  Despite their excellent gain factors, PMTs have fundamental limitations.  Poor 

quantum efficiencies, large cathode work-functions, high operating voltages, and 

susceptibilities to magnetic fields demand the design of other high gain photon detectors 

for certain applications (e.g. hybrid positron emission tomography and magnetic 
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resonance imaging systems) [41].  The readout of thin inorganic scintillating fibers, such 

as YAG:Ce which emits in the green, may be well suited for the relatively new and 

promising new photosensor, the silicon photomultiplier.  Fig. 19 shows the superior 

spectral response of photodiode based sensors compared to PMTs. 

 

Fig. 19. The spectral response of a photodiode is superior to that of a PMT.  Even a bialkali 

PMT is poorly matched to the emission spectrum of YAG:Ce, peaked at 550 nm.  Figure 

adapted from [8]. 

5. 1.  Silicon Photomultipliers 

Photodiodes have long been used to detect visible light and operate using 

principles similar to diode based gamma ray spectrometers (e.g. HPGe detectors).  

Incident visible light photons create electron hole pairs which, in the presence of a strong 

electric field, can be swept apart forming measureable currents.  Although they consume 
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little power, conventional photodiodes are insensitive and suffer from noisy performance, 

especially at room temperature.  Consequently, they are typically operated in the 

continuous current mode.   

Avalanche photodiodes (APDs) operate at higher bias voltages (100-200 V is 

typical but biases in excess of 1000 V are not unreasonable) causing the multiplication 

(or “avalanche”) of ion pairs, in the depletion region, proportional to the number of 

photons incident upon the active region.  Gain factors of several hundred are typically 

achieved in this process.  Above a bias threshold known as the “breakdown voltage”, an 

APD enters the Geiger operating region which results in the complete discharge of the 

APD.  Geiger discharge will continue until the avalanche is quenched by reducing or 

removing the bias voltage across the diode.  Typically, this quenching is achieved using a 

large (typically 50-100 kΩ) ballast resistor in series with the diode.  The signal can be 

readout using a charge integrating pre-amplifier or directly across a load resistor [4].  A 

schematic is shown in Fig. 20. 

 

Fig. 20. Readout circuit of a Geiger-mode APD is shown; image is adapted from [4].  Va is the 

bias voltage, RL is the ballast resistor, RS is the load resistor across which Vout is measured. 
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This breakdown occurs and can be quenched in a time on the order of a few 

nanoseconds.  The rise and fall times of these current pulses are also influenced by the 

parasitic capacitances of the substrate.  A more accurate circuit model for a Geiger APD 

(G-APD) is described in [42] and [43] and shown in Fig. 21.   

 

Fig. 21. Circuit model of a passively quenched G-APD is shown with substrate and storage 

capacitances.  The image is adapted from [44].  Here, the diode array is modeled as a 

current source using the diode breakdown voltage, Vbr, and the resistance, RD,Nf, in series.  

The capacitors are the stray capacitances associate with the diode substrate.  

In Fig. 21, the upper circuit loop depicts the ballast (a.k.a. quenching) resistor, Rq, 

in parallel with its associated stray capacitance, Cq.  These values control the recharging 

rate and, thereby, the tail of the current pulse.  Despite a desire for fast recharge times, 

the design is limited by the capacitance of the substrate and the high resistor values 

required to ensure quenching.    The lower loop depicts the charge storage capacitance, 

CD, of the reverse biased diode and a fast-switching, pulsed current source, Vbr in series 

with RD, which imitates the firing of the G-APD by instantly reducing the diode terminal 

voltage to its breakdown value allowing the flow of charge across CD.  The final 

component, RD, is referred to as the “micro-plasma” series resistance of the diode during 
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discharge and slows the rise time of the pulse.  This model is described in more detail in 

[44]. 

G-APD diodes are sensitive to single photon events (neglecting inefficiencies) 

and produce exceptionally high electron multiplication factors (order of 10
5
-10

6
) thereby 

producing fast and directly measurable signals.  Arrays of G-APDs (known as silicon 

photomultipliers, solid-state photomultipliers, and a variety of other names) are made 

using complementary metal-oxide semiconductor (CMOS) fabrication techniques with 

pixel pitches as small as 25 µm [45] [46].  Recently, silicon photomultipliers (SiPMs) 

have become commercially available with high APD pixel densities (e.g. 1600 APD 

pixels/mm
2
) and extremely low breakdown voltages, as low as 30-70 V[45] [46].  Arrays 

of SiPMs are also commercially available, some with custom electronic readout modules.  

Examples of individual various SiPMs and SiPM arrays are shown in Fig. 22 and Fig. 23. 

 

Fig. 22. Hamamatsu Multi-Pixel Photon Counter is a trademarked line of 1x1 mm SiPMs with 

APD pixel densities ranging from 100-1600 mm
-2

.  Hamamatsu claims timing resolutions of 

200-500 ps, gain factors up to 2*10
6
, and photon detection efficiency of 25-65% depending 

on model [45].   



 

54 
 

 

Fig. 23. Sensl’s Scalable Silicon Photomultiplier Arrays are constructed using 4x4 individual 

SiPMs. These devices are conveniently designed for scalability.  The Sensl SPMMatrix (not 

shown) is a prefabricated, fully electronically integrated, commercially available 16x16 

SiPM array with 256 analog channels [46]. 

 Although SiPM pixels essentially output binary signals, collectively these 

devices provide a way to measure light proportionally (i.e. the analog signal output from 

a SiPM is proportional to the number of pixels which fire) over a wide dynamic range 

while maintaining sensitivity to single photon events.  Wangerin, et al., developed a 

passive electrical model of SiPMs with parameters derived from empirical observation of 

several popular SiPM models.  They extended the array models developed by Pavlov and 

Corsi by empirically extracting physical parameters for single diode quenching 

resistances, stray and storage capacitances, and breakdown voltages as well as accounting 

for readout effects [42] [43] [47].  Their model for the Hamamatsu S10362-11-025C, a 

40x40 array of 25µm pixels, is shown in Fig. 24. 
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Fig. 24. Passive circuit model for a Hamamatsu S10362-11-02C, adapted from [42].  For details, 

the reader is refered to [42]. 

5. 2.  SiPM Photon Detection Efficiency 

Since the number of photoelectrons is typically the limiting factor in scintillator 

resolution, the efficiency of a photosensor is of the utmost importance for the 

spectroscopist.  Unlike, traditional PMTs which have fairly low quantum efficiencies 

(e.g. 15-20%) due to the relatively large work function of the photocathode (e.g. 3-4 eV), 

SiPMs have high quantum efficiencies (e.g. ~70% depending on wavelength) [4] [8].  

However, the overall photon detection efficiency (PDE) of a SiPM is dominated 

primarily on the fill factor, or ratio of active to entire device surface area, and is given by
 

 ( )Geiger fill factorPDE QE V    
,
 (2.24) 

where QE is the quantum efficiency, Geiger is the probability of triggering an avalanche at 

a particular bias voltage, and fill factor  is the ratio of active APD area to total surface area 

of the SiPM.  Typical PDE values are reported between 15-25% for 1600 pixel devices 
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and 50-75% for 100 pixel devices depending on operating characteristics and incident 

wavelength [45].   

5. 3.  SiPM Response Linearity 

The finite number of pixels and their finite recharge time contributes to a 

fundamental limitation of the SiPM, namely device saturation.  Although the response of 

SiPMs is technically a binomial random variable, the expected number of pixels that fire, 

fN , can be approximated by 

 
1

1 1 1

photons photons

pixels

N PDE N PDE

N

f pixels pixels

pixels

N N N e
N

     
                 ,

 (2.25) 

for large numbers of pixels.  This assumes that the pixels have an infinitesimal recharge 

time.  The mean number of photoelectrons, photonsPDE N ,  per pixel determines the 

saturation of the device as shown in Fig. 25 for a SiPM of an arbitrary numbers of pixels 

and incident photons [4] [48].  As seen, the device becomes saturated when exposed to 

photon fluxes sufficient to produce an average of five photoelectrons per pixel in any one 

event (i.e. less than the pixel recharge time, typically on the order of a few tens of ns). 
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Fig. 25. The number of pixels which fire is a non-linear function of the number of photons 

incident upon the SiPM.  Higher pixel densities offer greater dynamic ranges and less 

saturation. 

5. 4.  Dark Counts, After pulses, and Cross-talk 

Several sources of noise affect the performance of SiPMs; first and foremost are 

dark counts.  Somewhat analogous to dark current in PMTs, dark counts occur when an 

electron is thermally released from a shallow trap in the active area of the SiPM, thereby 

causing an avalanche event.  The probability of this phenomenon is proportional to 

temperature and operating voltage, due to the probability of avalanche breakdown, Geiger .  

Dark count rates of several hundred thousand to a few million hertz per square millimeter 

can be expected, depending on the device and operating conditions [49]. 

Similar in nature to the mechanisms responsible for afterglow response of 

scintillating crystals, after pulses are caused when charge carriers produced in avalanches 

are temporarily and shallowly trapped during their migration before being thermally 

released after quenching causing another avalanche event.  The probability of this 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Number of Photoelectrons Per Pixel

M
e
a
n
 P

e
rc

e
n
t 

o
f 

P
ix

e
ls

 F
ir
in

g



 

58 
 

phenomenon is likewise proportional to temperature and, in particular, operating voltage.  

Since the electron multiplication during avalanche is directly proportional to the 

difference between the bias and breakdown voltage, increasing the operating voltage 

releases more electrons and, thus, further increases the probability of trapping and after 

pulsing. 

Cross-talk between SiPM pixels (really CMOS photodiode pixels, in general) 

occurs when a pixel discharge causes the release of charge in a neighboring pixel.  It is 

generally accepted that hot-carrier luminescence is responsible for pixel cross-talk due to 

the marked improvement of sensors with the implementation of deep, optically isolating 

pixel trenches [4].  Cross-talk increases proportionally to the inverse square of the pixel 

pitch (i.e. as the closer the pixels, the worse the cross-talk), and thus is expected to scale 

with the area of SiPM.  Cross-talk also increases with operating voltage.  Teshima, et al., 

suggest that the probability of cross-talk experiences “a kind of saturation” depending on 

the number of pixels firing [4]. 

5. 5.   SiPM Amplitude Resolution Limitations 

Random fluctuations in photon production, transport, and counting degrade the 

achievable amplitude resolution of any scintillator based detection system.  For the 

purposes of this discussion, the amplitude resolution of any system is defined as the ratio 

of the variation in signal amplitude (i.e. the full-width-at-half-maximum, FWHM) to the 

magnitude of the signal amplitude. 

The statistics of photon counting follow Poisson statistics; that is, the dispersion 

in the number of measured photons is PhotonsN , in general for linear detectors.  
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However, as discussed, SiPM are non-linear devices which saturate as the mean number 

of photoelectrons produced per pixel increases.  Therefore, in addition to Poisson 

fluctuations, signal dispersion in the device results from saturation and further degrades 

and limits the intrinsic detector resolution.  

Stoykov, et al., have described this overall intrinsic detector resolution of an ideal 

SiPM (i.e. a device without cross-talk, after pulses, or dark counts) in [48].  They show 

the resolution (i.e. the FWHM) due to signal saturation as 
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which monotonically increases with /photons pixelsPDE N N   , which represents the 

mean number of photoelectrons per pixel.  They also show that the resolution due to 

Poisson statistics is  
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Finally, the resulting overall ideal SiPM resolution is the quadrature sum of the two 

components, 
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The overall intrinsic resolution of an ideal SiPM is graphed as a function of the mean 

number of photoelectrons per pixel,  , in Fig. 26. 
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Fig. 26. The overall intrinsic resolution (FWHM) of an ideal SiPM is graphed as a function of 

the mean number of photoelectrons produced per pixel, shown here for a SiPM with 1600 

pixels.  Poisson statistics dominate the resolution limit when /
N

N
 
is large.  While relative 

dispersion due to Poisson statistics improves at higher photon fluxes, eventually the SiPM 

becomes saturated and the dominating source of signal dispersion and degraded resolution. 

From (2.28), it is seen that the overall intrinsic resolution of a SiPM is a function of 

the mean number of photoelectrons per pixel,  , which conveniently has a minimum at 

1.59   for any SiPM independent of PDE  or pixelsN .  Importantly, however, the 

overall resolution increases proportionally to the square root of the number of array 

pixels; thus, the minimum resolution is 2.92 / pixelsN
 
at 1.59  . This satisfies intuition 

since the linearity, and thus the saturation, of the device is dependent on the number of 

pixels available to fire.  This is shown for various SiPM arrays in Fig. 27. 
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Fig. 27. The overall intrinsic resolutions (FWHM) of SiPMs with various array sizes are shown.  

Interestingly, the minimum resolution is independent of the mean number of 

photoelectrons, thus the number of incident photons.  However, minimum resolution 

improves as the square root of the number of pixels.  

In addition to the fluctuations of ideal SiPMs, dark counts, after pulses, and cross-

talk further degrade the achievable energy resolution of real SiPMs.  The decay time of a 

scintillator therefore becomes critically important in terms of the achievable energy 

resolution of the system because the longer the required signal integration time, the more 

noise will be integrated as well.  According to Johnson, et al., the “excess noise factor” 

contributes to energy resolution degradation only when the dark counts are on the same 

order as the number of pixels which fire [50].  Recall from (2.5), the brighter and faster 

the scintillation pulse the higher the Birks’ figure of merit and additionally the lower the 

contribution to energy resolution performance from intrinsic SiPM (and any detector in 

general) noise sources. 
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While Stoykov’s analytical model provides useful insight into the inherent signal 

dispersion of an ideal SiPM, it fails to consider the temporal effects of signal integration.  

There are few scintillators (organics being a notable exception) that have decay times on 

the order of, or faster than, the recharge time of a SiPM pixel.  As a result, most 

scintillator readout electronics must include some shaping time over which the light pulse 

is integrated.  Consequentially, it is not safe to neglect the effects of noise integration 

from dark counts, after pulses, or cross-talk. 

In response, Johnson, et al., propose the effective number of available pixels be 

defined as 

 
shapeeff

pixels pixels

recharge

N N



 , (2.29) 

where recharge  is the pixel recharge time and shape  is the shaping time of the readout 

circuit.  According to Johnson, et al., the amplitude resolution of the SiPM can be 

described by two response regions: 1) the linear region in which no more than 30% of the 

pixels fire and 2) the non-linear region in which more than 30% of the pixels fire.  They 

show in [50]  that the SiPM component of the overall energy resolution of the detector 

system as a function of energy in the linear region can be written as 
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, (2.30) 

where F  is an empirically measured excess noise term generated from cross-talk and 

after pulsing during the integration time, DCN  is the expected number of dark counts 

during the integration time, and fN  is the number of pixels which fire as a result of 

detected photons.  Finally, Johnson, et al., argue that binomial statistics best describe the 
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SiPM response in the non-linear region from which the amplitude resolution in terms of 

triggered pixels has been shown to be 
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 (2.31) 

It is important to note that the signal dispersion described by (2.31) is in terms of number 

of pixels fired and must be appropriately converted into amplitude using (2.25).  For full 

treatment and more complete discussion, the reader is referred to [50].  
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III.  Experiments 

Fiber shaped inorganic scintillators coupled to SiPMs are promising new radiation 

detector concept for particle tracking and standoff detector applications.  This chapter 

describes experiments and simulations conducted using YAG:Ce fiber crystals with fiber 

end SiPM readout.  The goal of these experiments is to determine the achievable energy 

and position resolution of such a detector system.   

1. Multi-Pixel Photon Counter Investigation 

Paramount to the successful implementation of a compact, ruggedized, and 

deployable scintillation detector is the SiPM.  In contrast to PMTs, the SiPM is a 

relatively new photosensor with emerging theoretical models to describe its signal 

response and dispersion.  Consequently, much of the focus of this research is centered on 

the signal response of SiPMs.   

The Multi-Pixel Photon Counter (MPPC) is the trademarked SiPM manufactured 

by the Hamamatsu Photonics company in Japan.  The MPPC was chosen for this research 

due to its relative popularity in industry and literature.  The MPPC model S10362-025C 

SiPM contains a 40x40 array of G-APD pixels on a 1 mm
2
 CMOS chip which is housed 

in a ceramic casing with a layer of optical epoxy protecting the active surface.  This 

particular model was chosen for these experiments because of the dynamic range 

provided by the large number (1600) of pixels.  Similar models are commercially 

available with 100 and 400 pixels; all three arrays are available in metallic or ceramic 

packaging as well as surface mountable chips.  The S10362-025C, henceforth referred to 

as the MPPC, is shown in Fig. 28. 
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Fig. 28. The Hamamatsu model S10362-025C MPPC is shown.  The photosensitive area in the 

center of the ceramic package is 1x1 mm
2
, contains 1600 active G-APD pixels, and lies 

underneath a layer of protective optical epoxy. 

This section describes the calibration process and several experiments and 

simulations conducted in order to ensure proper understanding of the MPPC response to 

scintillation.   

1. 1.  MPPC Readout Circuit 

The readout circuit of the MPPC was constructed using conventional electronic 

components and a prototype printed circuit board (PCB).  Coaxial cables (RG-178U) 

were used to provide the bias voltage to and carry the signal away from the MPPC PCB.  

The readout was designed for a voltage sensitive configuration using a 50 Ω load resistor.  

Two MPPCs, each with their own identical readout circuit, were used throughout these 

experiments.  The circuit schematic is shown in Fig. 29. 
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Fig. 29. The MPPC readout circuit used during the experiments is shown.  The MPPC is 

typically biased a few volts above breakdown, nominally 71-72 V. 

1. 2.  MPPC Readout Circuit Modeling and Simulation 

This readout circuit is of the basic form suggested by Hamamatsu and has been 

widely publicized in the scientific literature [4] [45] [49].  As discussed in Section II. 5. 

1. , this circuit has been extended by Wangerin, et al., to include an empirically derived 

passive model for the discharging MPPC, see Fig. 21 [42].  Their circuit model was 

modified using Orcad Capture 16.3 PSPICE software [51] to match the values of the 

readout circuit shown in Fig. 21.  In addition, the model was expanded to allow the user 

to select and sweep through any number of pixels which fire and allows the simulation of 

repetitive pixel firings (i.e. either after pulsing or retriggering).  This expanded model 

parametrically adapts the values of active and standby components in pixel cells and is 

only limited by processing time and available memory.  The expanded circuit model is 

shown in Fig. 30.  
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Fig. 30. The passive circuit model of an MPPC first developed by Wangerin, et al., has been 

expanded as shown.  Additional features include scalable and selectable parameterized 

component values which allow modeling pixel firing across the dynamic range of the device 

as well as the capability to model repetitive pixel firings or after pulses. 

The expanded circuit model used the values reported by Wangerin, et al., for the 

passive components.  Only the bias voltage, breakdown voltages, ballast resistor and 

filter capacitor values were modified.  No attempt to empirically extract MPPC 

parameters was made, rather the values reported in [42] were parameterized.  That is, the 

user specifies the number of pixels which fire, n , which control the component values 

according to basic electrical circuit theory for series and parallel equivalence.  The 

equivalent resistor and capacitor components values in the expanded circuit model are 
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. (3.1) 

During the bulk of the experiments, signal amplitudes from this readout circuit 

were sufficiently large enough that they could be digitized directly using a Tektronix 

DPO7104 digital oscilloscope capable of 10-GSa/s with 1-GHz of bandwidth.  The 

oscilloscope was used primarily as a fast analog-to-digital converter (ADC) and was 

controlled by a laptop to transfer the digitized waveform data over Transmission Control 

Protocol (TCP/IP).  Under the occasional circumstance, MPPC readout signals could not 

be directly digitized because of the oscilloscope noise floor (around 0.7-1 mV at 1 GHz 

of bandwidth).  For example, even using a relatively large bias voltage and modest 

breakdown voltage (e.g. 73 and 68 V, respectively) in the MPPC readout circuit model, 

one should expect maximum signal amplitudes of less than 500 µV per pixel fired, as 

shown by the simulated single pixel response in Fig. 31. 
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Fig. 31. The simulated response of a single pixel within a MPPC firing is shown.  The maximum 

amplitude is less than the noise floor of the Tektronix DPO7104 oscilloscope.  

Therefore, in order to observe single pixel firing events with the oscilloscope, an Ortec 

9306 1-GHz fast preamplifier was required. 

1. 3.  MPPC Calibration 

 Dark counts provide a convenient way to calibrate each device and, until such 

time when device manufacturing shows better uniformity, each MPPC must be uniquely 

calibrated for the best results.  Sophisticated systems may require independent bias 

circuits for each device to ensure uniform operating characteristics, such as pixel gain.  

This, of course, is complicated by the temperature dependent nature of the MPPC 

response and, indeed, all SiPMs in general.  However, during this research all MPPC 

experiments were conducted at ambient, uncontrolled room temperature (i.e. ~20-25°C) 

using only a single bias supply voltage for all MPPCs to limit interfaces with the dark 

box. 



 

70 
 

Dark count calibration of MPPCs requires the measurement of a single pixel 

firing and subsequent cross-talk events caused by thermally excited electrons which 

initiate avalanches within the active area.  As a consequence of the relatively low single 

pixel signal amplitude, the calibration required the use and calibration of an Ortec 9306 

preamplifier.  First, the gain of the preamplifier was measured using a calibrated Agilent 

33210A arbitrary waveform generator and the oscilloscope (using a 1 GSa/s sampling 

rate).  Next, the MPPCs were placed in a light tight box made from a polycarbonate case 

which was modified with RG-59 bulkhead connectors to supply the bias voltage and 

readout channels.  The average dark count rate was measured with the MPPC inside the 

polycarbonate dark box.  A dark count rate of 200-300 kHz (increasing with bias) was 

measured and is within the manufacturer’s specification, indicating a reasonable light 

tight seal.  The maximum amplitudes of 24,000 dark counts at four different bias voltages 

were recorded and the results from one MPPC have been corrected for preamplifier gain 

and are shown in a histogram in Fig. 32.  The results of this calibration is discussed in 

Section IV. 1. 1.  
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Fig. 32. The dark count pulse height spectrum from MPPC#1 is shown at four different bias 

voltages.  There are three distinct sets of peaks which correspond to the single, two, and 

three pixel events which result from dark counts and pixel cross-talk.  The cross-talk 

probability and pixel gain clearly increases with bias voltage. 

1. 4.  MPPC Scintillator Response Experiment and Simulation 

Prior to conducting any experiments with long, unconventional YAG:Ce fibers, 

the response of the MPPC was independently tested by measuring the time domain 

fluorescence decay profile and pulse height spectrum from another common scintillator 

material.  A 1x1x12 mm
3
 cerium activated lutetium-yttrium oxyorthosilicate (LYSO:Ce) 

crystal was coupled on its end to the MPPC using BC-630 (n=1.46) optical grease.  

LYSO:Ce is a bright (~28,000 ph/MeV) and fast scintillator which, unlike YAG:Ce, has 

only one fast component around 42 ns [52].  Additionally, LYSO:Ce has the same 

refractive index as YAG:Ce (n=1.82).  The LYSO:Ce sample used in this experiment was 

grown via the µ-PD method by Fibercryst.  The end was cut and polished and the crystal 
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was wrapped in several layers of Teflon tape by the author.  Consequently, the optical 

quality of the surface treatments may be somewhat questionable. 

The scintillation response of the LYSO:Ce to gamma radiation from a 
22

Na point 

source
 
was measured directly via the MPPC readout circuit (72.0 V bias) using the 

oscilloscope.  Using a rising edge trigger, 100,000 digitized waveforms were collected, 

each 250 ns in duration.  The time domain fluorescence decay measurements of 

LYSO:Ce were used to confirm proper MPPC response to a scintillation pulse.  A typical 

pulse is shown below in Fig. 33.  The measured data and experimental results are 

presented in Section IV. 1. 3. in Fig. 42 and Fig. 43. 

 

Fig. 33. A typical digitized LYSO:Ce gamma scintillation pulse as measured directly using the 

MPPC readout circuit and 1 GSa/s oscilloscope is shown. 
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To complement the LYSO:Ce MPPC measurements, the experiment was 

simulated using DETECT2000 [53], a Monte Carlo based software program designed to 

model the optical properties of scintillators.  DETECT2000 uses optical ray tracing to 

track user defined quantities of randomly polarized scintillation photons throughout the 

scintillator medium and any optical coupling medium such as wavelength shifters or light 

pipes until the photons are either lost due to escape, absorption, or detection.  The 

photons are born in accordance with the user defined decay time profile which is written 

as a series of weighted exponential sums.  The user specifies the refractive indices and 

geometries of all materials and detectors; the user must also specify the surface models 

which correspond to different optical processes at optical interfaces.  For example, a 

surface can be defined as painted or metallic (requiring reflectivity coefficients) which 

correspond to diffuse or specularly reflective surfaces, respectively.  Surfaces that are 

specified as ground or polished are modeled using refraction and Fresnel reflections 

associated with the changes in refractive index; the difference in the two models is the 

degree of surface roughness modeled using micro-facets.  More complicated model 

parameters such as the amount of surface roughness, the reflectivity coefficients, and 

backscatter intensities can also be adjusted to match empirical data.  Other helpful 

features include the calculation of time of arrival, path length traveled, and a spatial 

distribution tally of each scintillation photon at the detector surface [54]. 

The simulated LYSO:Ce crystal was assumed to produce 14,000 photons for each 

511 keV gamma ray associated with positron annihilation from the 
22

Na source.  The 

simulated decay time was modeled as a single exponential with a 42 ns decay time.  Five 

of the six LYSO:Ce crystal surfaces were modeled using the paint surface treatment with 
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a reflection coefficient of 0.95 which treats each surface as a 95% efficient Lambertian 

reflector to represent the Teflon tape.  The sixth and final crystal surface was modeled to 

include refractions and reflections strictly due to changes in refractive index (i.e. optical 

refractions and Fresnel reflections).  The detector surface was assumed to be 100% 

efficient with a thin coating of n=1.46 coupling compound.  The DETECT2000 code is 

available in Appendix A1. 

The results of the DETECT2000 simulation were processed to form a time series 

of unit delta functions which represent the arrival of photons on the MPPC surface as a 

function time.  A separate Monte Carlo routine determined which of the photons would 

produce avalanche pixel discharge in accordance with the PDE specified in the 

Hamamatsu product sheet at the peak wavelength of YAG:Ce emission (PDE=15% at 

550 nm) [45].  This final time dependent series of unit deltas represented individual 

pixels firing assuming independence (i.e. no pixel could fire before being reset) and was 

convolved with the simulated response of a single pixel firing at bias voltage of 72 V 

using the expanded MPPC readout circuit PSPICE model.  The result is a fully simulated 

LYSO:Ce 511 keV gamma ray scintillation pulse as would be observed via the readout 

electronics, the results of which can be found in Fig. 45 and Fig. 46 of Section IV. 1. 3.  

2. YAG:Ce Fiber Crystal Investigation 

The other key component in this research, the YAG:Ce fibers, were grown by the 

Fibercryst company in cooperation with the University of Lyon in Lyon, France.  The 

YAG:Ce cylindrical fibers were grown in an iridium crucible and extruded via the µ-PD 

method with an outer diameter of 400 µm in an inert, argon atmosphere.  The fibers were 

cut to a length of 100 mm and the ends were polished by Fibercryst.  A total of 36 
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YAG:Ce crystal fibers have been procured for this research, four of which are 

prepackaged by Fibercryst in a 2x2 bundle with a clear polyethylene cladding.  However, 

only six individual fibers are subject to the bulk of these experiments. 

The vast majority of the YAG:Ce experiments were conducted using dual fiber 

end MPPC readout.  In order to repeatedly couple various fibers to the same set of 

MPPCs, an aluminum vice mount was designed and custom manufactured at the AFIT 

Model Shop.  The vice mount, fiber, and MPPCs were housed in a black polycarbonate 

dark box with three RG-59 bulkhead connectors.  An illustration of the custom vice 

mount is shown in Fig. 34. 

 

Fig. 34. The custom manufactured MPPC and YAG:Ce fiber vice mount is illustrated. 

The six YAG:Ce fibers under study were chosen randomly from the original 

shipment of 12.  The six fibers were assigned a unique number and for the sake of 
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compact notation will henceforth be referred to as F1, F2, etc., through F6.  The first set 

of experiments intended to show proper MPPC response to the YAG:Ce scintillator.  

However, upon irradiating the detector system with gamma rays, it became immediately 

apparent that the low density, low effective Z, and small volume of the individual 

YAG:Ce fibers made for a very inefficient gamma detector material.  Low count rates 

from a bare source indicated that measurements made via narrow collimation would be 

impractical with the available laboratory sources.  As a result, the position resolution 

measurements originally planned for a collimated gamma source were modified for a 

collimated alpha source.   Evidence for these claims and further quantitative discussion is 

provided in Section IV. 2. 2.  

An 
241

Am alpha source was selected because the mean range of the 5.4 MeV 

alpha associated with its decay has a range in excess of 4 cm in dry, sea level air [8] [55].  

However, the mean range of that alpha in YAG:Ce is less than 20 µm, calculated using 

The Stopping and Range of Ions in Matter computer code (SRIM 2008.04 [56]).  

According to the SRIM tables, the linear stopping power of a 5.5 MeV alpha in dry, sea 

level air is 892 keV per cm.  The full results of the SRIM table calculations are shown in 

Appendix A3.   

The alpha source was placed 5.8 mm directly below the YAG:Ce fiber on a 

wooden block to minimize alpha straggling in air.  Only alphas produced on or near the 

surface of the 
241

Am source can escape the material with enough energy to interact within 

the YAG:Ce fibers.  Those alphas which do interact lose very little energy in transit and 

are sure to deposit the entirety of their energy within the scintillator in a range of 20 μm 

and are expected to produce a bright scintillation light pulse. 
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2. 1.  YAG:Ce Scintillation Properties Investigation 

The initial YAG:Ce experiment was intended to characterize the time domain 

fluorescence decay profile and amplitude of scintillation pulses from each of the six 

fibers measured directly from the MPPC readout.  For this initial experiment, no 

collimation was used; rather, a bare 
241

Am source was placed 5.8 mm directly underneath 

the fiber under test, well below the mean range of 4 cm.  Due to the long decay times of 

YAG:Ce combined with its overall lower light yield when compared to LYSO:Ce (Birks’ 

figure of merit values MYAG ≈ 68 and MLYSO ≈ 650 ph ns
-1 

MeV
-1

), the MPPC bias was 

increased to 73V at the risk of increased quantities of dark counts, after pulses, and cross-

talk in order to increase the signal-to-noise ratio on the oscilloscope. 

For each of the six fibers under study, 1600 alpha particle scintillation pulses were 

readout via MPPCs, directly digitized by the oscilloscope, and stored on the laptop 

controller.  Additionally, digitized scintillation waveforms for one fiber, F6, were 

collected during gamma irradiation from a bare 
22

Na source.  This fiber was tested both 

bare and wrapped with several layers of Teflon tape.   These waveforms were digitally 

processed to compare the fluorescence decay profiles to the values published in literature.  

The results can be found in Section IV. 2. 1.  

As with the LYSO:Ce experiment, the YAG:Ce fiber experiment was modeled in 

DETECT2000.  Scintillation parameters from Ludziejewski, et al., were chosen for this 

model [32].  Specifically, a light yield of 17,000 ph/MeV was selected and an α/γ ratio of 

21% was applied; therefore, the 5.4 MeV α-particle was assumed to produce 17,000 

scintillation photons (approximately accounting for energy lost due to particle 

straggling).  Two decay constants, 88.9 ns and 458.5 ns, were chosen with two 
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independent intensities, 14.9% and 85.1% respectively (refer to Table 1).  The refractive 

index of the 400 µm diameter by 100 mm long cylindrical YAG:Ce fiber was set to 1.82 

and the emission wavelength was set to 550 nm, the emission peak of YAG:Ce.  Air was 

used as the fiber cladding (n=1.00).  Importantly, the surface treatments were modeled as 

polished; this surface model applies only refraction and reflection due to changes in the 

refractive index between the air and the fiber.  The two fiber ends both had 100% 

efficient detectors with a thin coating of index matching fluid (n=1.46).  Again, the data 

from DETECT2000 was processed and convolved with the MPPC single pixel response 

to produce a fully simulated YAG:Ce 5.4 MeV alpha particle scintillation pulse as 

measured via the readout electronics.  The DETECT2000 code is available in Appendix 

A2.  These results are presented in Fig. 49 and Fig. 50 of Section IV. 2. 1.  

2. 2.  YAG:Ce Energy Spectrum and Resolution Measurements 

Energy calibration measurements were taken using the YAG:Ce fibers coupled to 

a single fiber end MPPC readout and compared to a single fiber end PMT readout.  

Unlike conventional scintillation detectors, energy calibration using dual fiber end 

readout requires careful collimation of the particles rather than direct irradiation from a 

bare source.   A bare source would result in a much wider spread in the spatial position of 

interaction along the fiber which would reduce the overall energy resolution because of 

varying amounts of scintillation photon absorption.  This light attenuation property will 

later be exploited to estimate the position-of-interaction. 

For the MPPC readout experiments, an 
241

Am alpha source was collimated using 

a 4.7 mm (3/16”) thick circular aluminum plate with a 1 mm diameter hole drilled out.  

The alpha source was placed 5.8 mm directly underneath the center of the mounted 
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YAG:Ce fiber.  In this configuration, the spread of alpha particles along the length of the 

fiber is limited to 2.4 mm (see Appendix A4).    This experiment was setup to minimize 

variation in the amount of scintillation light produced and detected in the YAG:Ce fiber.   

In addition to alpha radiation, several gamma sources were also collimated and 

used to irradiate the YAG:Ce fibers during MPPC readout.  Again, because of the low 

count rates from gamma irradiation of YAG:Ce, the energy resolution measurements 

from a 
22

Na source were taken
 
using only one fiber, F6.  These sources were placed 

behind a one inch thick lead brick with a 1 mm diameter hole removed for collimation.  

The resulting spread of the gamma beam at distance of three inches is 6 mm. 

The YAG:Ce energy resolution measurements were made using the photodetector 

(i.e. either MPPC or PMT) connected in series to a Cremat CR111 charge integrating 

preamplifier, an Ortec 672 shaping amplifier with a 1 µs shaping time, and an ADCAM 

multi-channel analyzer.  These results can be found in Section IV. 2. 2.  

2. 3.  YAG:Ce Position Resolution Measurements and Simulations 

Position resolution experiments were conducted on YAG:Ce fibers using dual 

fiber end MPPC readouts by two sources of excitation, laser induced photoluminescence 

and alpha scintillation.  The premise behind these experiments was that position-of-

interaction information could be inferred from differences in scintillation light intensity 

measured at opposite ends of YAG:Ce fibers by MPPCs in accordance with (2.13).  Only 

five fibers were used in these experiments, F1-F5; F6 remained wrapped with Teflon tape 

which would significantly reduce or eliminate the probability of alpha interaction within 

the fiber.   
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The photoluminescence experiments were conducted using a 405 nm solid state 

laser to excite the Ce
3+

 activator at various positions along the length of the fibers (refer 

to Fig. 11).  The laser beam width of 2.65 mm (FWHM) was determined by measuring 

the light intensity while scanning the beam across the surface of an MPPC (see Appendix 

A4; the beam was assumed to be Gaussian in shape.  Throughout the experiment, the 

MPPC bias was reduce to 71.5 V because of the high intensity of laser light. A graduated 

neutral density filter was adjusted to reduce the laser intensity until the YAG:Ce steady 

state fluorescence signal amplitude measured directly using the MPPCs was near 10 mV, 

well below device saturation.  Saturation was determined by empirical observations.  

That is, the fluorescence intensity was increased by reducing laser stimulation via the 

graduated neutral density filter until the measured oscilloscope voltage no longer 

increased.   This saturation occurred at approximately 50 mV, thus 10 mV was selected 

as a satisfactory steady state operating point between saturation and the minimum 

discernable level of the oscilloscope (~1 mV).  These relatively low signal voltages may 

indicate that MPPC pixels are unable to fully recharge before being retriggered; this type 

of pile up may call into question this methodology and will be discussed in more detail in 

Section IV. 2. 3.  

A mechanical chopper wheel was used to modulate the laser signal at 400 Hz and 

trigger the oscilloscope.  It is noteworthy that these modulation frequencies were selected 

primarily to trigger the oscilloscope and were much too slow to capture the MPPC 

transient response.  The MPPC signals were directly measured using the oscilloscope; 

1000 sets of two channels of digitized waveform data were recorded at each position 

during the peak of the laser modulation for 250 ns at 1 GSa/s.  Using a mirror on a 
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motorized calibrated rail, the laser beam was positioned at 8 randomly selected positions 

along the length of the fiber.  The setup can be seen in Fig. 35. 

 

Fig. 35. Photograph of the photoluminescence experimental setup.  

During the photoluminescence measurements, each of the five fibers was 

mounted using fresh BC-630 optical grease and measured five separate times in an 

attempt to quantify the repeatability of optical coupling.  Due to the presence of optical 

imperfections (e.g. micro-bubble clusters, surface roughness, etc.) new locations of laser 

excitation were selected during each measurement to prevent unintentional measurement 

bias.  That is, if an area of high concentration of optical imperfections was repeatedly 

excited, the increased probability of optical scattering could reduce the fluorescence light 

intensity measured at one or both MPPCs.  A 973x scanning electron microscope (SEM) 
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image of a YAG:Ce fiber, shown in Fig. 36, shows potential optical flaws on the surface 

of the YAG:Ce fibers. 

 

Fig. 36. A 973x SEM image of a YAG:Ce fiber shows surface imperfections such as micro 

bubbles, protrusions, and pits.   

Position resolution in the five YAG:Ce fibers (F1-F5)  was also measured in a 

similar manner using scintillation from alpha irradiation.  During the scintillation 

measurements, the MPPC bias was again set to 73 V to increase the signal-to-noise as 

measured on the oscilloscope.  The collimated 
241

Am source described in Section III. 2. 2. 

was positioned by hand 5.8 mm below the YAG:Ce mounted fiber at centimeter 

increments along the fiber length.  As described in Section III. 2. 2. , the beam of alphas 

irradiated a 2.4 mm section of fiber at each position.  Scintillation pulse intensity 

measurements were made by digitizing and recording the waveform data from the two 
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channels of dual fiber end MPPC readout.  Each waveform was collected for 1 µs at 

1 GSa/s using a two channel coincidence logic trigger set just above the three pixel dark 

count threshold to increase the probability of detection but reduce the probability of 

triggering on dark count chance coincidences. That is, dark count coincidence is any 

event which is caused by dark counts occurring nearly simultaneously in both MPPCs 

(i.e. within the 10 ns coincidence gate) and above rising edge threshold of the 

oscilloscope trigger.  Although rare, these events are not negligible due to the long count 

times (i.e. on the order of tens of minutes) required.  Due to relatively low count rates 

(e.g. ~20 counts per minute, depending on beam alignment) from the collimated alpha 

source, only 200 waveforms were measured at each position and each fiber was freshly 

mounted and the measurement repeated only three times.  An illustration of this setup can 

be seen in Fig. 37. 

 

Fig. 37. An illustration of the YAG:Ce position resolution experimental setup using a collimated 

alpha source is shown. 
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This experiment was also modeled using DETECT2000 using the same 100 mm 

fiber modeled in Section IV. 2. 1. (see Appendix A2 for code).  Three separate fibers 

were simulated using three different attenuation lengths, 10, 20, and 30 cm.  Thirty 

scintillation events (17,000 photons per event) were simulated at nine positions spaced 

equally by 10 mm along each fiber between 10-90 mm.  The number of photons 

measured by a single end, 100% efficient detector was recorded for each of the thirty 

events during the simulation of each of the three fibers.   

The scintillation photon flux results of the DETECT2000 simulations were used 

in a separate Monte Carlo routine which modeled the random nature of the incident 

scintillation photon flux (i.e. the true number of photons is a Poisson distributed random 

variable) and the random process involved in SiPM photon counting (i.e. a binomial 

random variable) to determine the overall number of pixels which fire given a 

deterministic scintillation photon flux.  The code used the mean number of scintillation 

photons as a function of position of interaction (i.e. as determined via DETECT2000 

simulations) to select a Poisson distributed random variable representing the number of 

incident photons from a full energy scintillation event, phN .  Using that random 

parameter, the code drew a binomial random variable from phN  with probability PDE 

(e.g. 15% for the MPPC) representing the resulting number of pixels which fired.  This 

experiment was repeated 50,000 times to estimate the best-case expected value and 

variance in the number of pixels which fire given a known scintillation pulse (i.e. given 

the expected value of the scintillation light yield) without the effects of excess noise (e.g. 

electronic noise, after pulses, crosstalk). 
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Ultimately, the results from these simulations were processed in the same manner 

as the measured data.  First, the number of pixels fired was determined and assumed to be 

directly proportional to the number of incident photons.  This assumption is valid for 

small numbers of incident photons with respect to the number of effective pixels, see 

(2.29).   Next, the attenuation length was estimated by inverting (2.13) and using a 

linear-least-squares fit to determine the slope of the plot of    2 1log[ / ]N x N x  as a 

function of interaction positions, x.  Note that the attenuation length is determined by 

taking the logarithm of the ratio of the mean number of photons at each fiber end; iN  is 

the average number of fired pixels from the i
th

 MPPC due to a scintillation pulse 

occurring at position x along the fiber axis.  Finally, using the empirically measured (i.e. 

estimated) attenuation length, the position of interaction was estimated on an event-by-

event basis.  The standard deviation of the data is said to be the position resolution.  The 

results are found in Section IV. 2. 3.  
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IV.  Results and Analysis 

The results of the experiments and simulations using YAG:Ce fibers and MPPCs 

are presented, analyzed, and discussed in this chapter.  This chapter begins with the 

results of the MPPC calibrations and sanity checks; measured signals are compared to 

simulations and LYSO:Ce scintillation decay time measurements are compared to 

published values.  YAG:Ce fiber scintillation properties and the results of energy and 

position-of-interaction resolution measurements and simulations are presented and 

discussed.  Finally, the chapter concludes with a discussion of practical and quantifiable 

means of improving the fiber scintillator system for future research. 

1. MPPC Findings 

This section describes the significant results of the MPPC calibration 

measurements, simulations, and scintillation response measurements.   

1. 1.  MPPC Breakdown Voltages and Cross-talk 

By using the dark counts and subsequent cross-talk, key parameters (e.g. 

breakdown voltage, pixel gain, and pixel capacitance) of the MPPC can be determined as 

described in Section III. 1. 3.  These values are critical for proper simulation of the 

MPPC signal response using the PSPICE model.  As such, the results are presented first. 

Two MPPCs were the primary readout devices throughout these experiments.  A 

dark count pulse height calibration histogram of MPPC#1 can be found in Fig. 32.  In 

Fig. 38, the dark count pulse height calibration histogram of MPPC#2 is shown. 
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Fig. 38. MPPC#2 dark count pulse height spectrum is shown for four bias voltages.  The 

amplitude of the pulses is linearly dependent on excess bias.  As shown, cross-talk 

probability increases with bias voltage. 

Using the peak amplitudes of the dark count pulse height spectra, one can 

determine the single pixel response as a function of bias voltage.  The breakdown voltage 

can be determined by the x-intercept of a plot of the single pixel response as a function of 

bias voltage, see Fig. 39. 
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Fig. 39. The single pixel response amplitude of MPPC#1(left) and MPPC#2 (right) as a function 

bias voltage.  The breakdown voltage determined by the x-intercept is 68.6 V and 68.9V, 

respectively.  The error bars are the standard deviation of the measured single pixel 

response data. 

The differences in breakdown voltage and very slight differences in pixel gains (i.e. slope 

of the line, which is related to the pixel capacitance) indicate that the response of these 

MPPCs can only be matched at a single operating bias voltage (i.e. the intersection of the 

two lines, if it exists).  That operating bias voltage is an unreasonable 95.2 V for these 

two MPPC; consequently, the response can only be matched by using unique bias 

supplies.  However, if the difference is within the tolerance of the application or can be 

corrected, then the MPPCs may be paired to a single bias supply without loss of 

functionality.  For these experiments, the MPPCs were biased with a single supply for 

simplicity and to minimize interfaces with the dark box.  Differences in the MPPC gains 

are accounted for in post processing corrections. 

 Additionally, by analyzing the area under the pulse height spectra, one can 

determine the probability of cross-talk as a function of bias voltage.  The ratio of the area 

under the double pixel events to single-plus-double pixel dark count events gives the 
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probability of single pixel cross-talk, see [4].  The single pixel cross-talk data as a 

function of bias voltage is plotted in Fig. 40. 

 

Fig. 40. Single pixel cross-talk probabilities are plotted versus bias voltage for both MPPCs.  

The error bars give the uncertainty due to counting statistics.  

If precise crosstalk probabilities are essential for the application at hand, the error bars in 

Fig. 40 could be substantially reduced by increasing the number of counts (i.e. more 

measurement time since dark count rates are fixed at stable temperatures) shown in 

Fig. 32 and Fig. 38.   

1. 2.  MPPC Pixel Gains 

By analyzing digitized dark count waveform data, several key operating 

parameters of each MPPC can be extracted.  First, the pixel electron gain values can be 

extracted.  By integrating the waveform over a short shaping time, the total charge 

released per pixel can be estimated by 
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N
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V t V n
Q e M I dt dt

R N R

 




       , (4.1) 

where Q  is the estimate of the charge released during each pixel firing and is equal to the 

charge of an electron times the pixel gain, M.  In (4.1), R  is the load resistor over which 

the charge current, I, becomes the time dependent voltage waveform,  V t , that is 

digitized over N  samples throughout the integration time,  , to become  V n .  

Therefore, by averaging or simply summing the digitized waveform over a brief shaping 

time, a quantity directly proportional to the pixel gain is achieved, opening the possibility 

for regular self-calibration routines to be programmed into software controlling deployed 

SiPM devices.  Similar calibration routines could be used to pair devices with similar 

pixel gains. 

 Using the measured breakdown voltages and nominal circuit parameter values 

from Wangerin, et al., a single pixel event was simulated using the expanded PSPICE 

model.  The simulated single pixel waveform was compared to the measured single pixel 

waveform, the results can be found for MPPC#1 in Fig. 41. 
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Fig. 41. The simulated waveform of a single pixel firing event is shown compared to the 

measured response of 25 of single pixel waveforms (and their mean) from MPPC#1 at 73 V 

bias.   

Agreement between the simulated and measured data is quite good considering there is a 

degree of freedom in the components of the pixel capacitance (i.e. CPixel = CD + Cq), 

which define the pixel discharge and recharge time constants.  It is important to note that 

the pixel decay constant is measured to be approximately 5 ns (measured by the slope of 

the logarithm of the waveform); therefore, the pixels are generally fully recharged within 

about 20-25 ns.  The resistor and capacitor values of each MPPC could be measured 

empirically (e.g. I-V curve measurements) then adjusted in the expanded circuit model to 

provide a better fit, but such effort would retract from the objective of this research.  
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Instead, this data is presented strictly to illustrate a reasonable understanding of the 

MPPC response. 

According to (4.1), the average of the voltage waveform divided by the readout 

load resistance (i.e. 50 Ω) and multiplied by the integration time gives the charge.  Doing 

so gives 39.5 fC for the simulated waveform and 40.5 fC and 34.2 fC for the mean 

measured waveforms for MPPC#1 and #2, respectively.  The agreement is impressive 

considering the Wangerin model parameters (e.g. Rq and RD) were not empirically 

measured.  The pixel gains are computed to be 2.53± 0.5010
5
 and 2.15± 0.4110

5
, 

respectively, in good agreement with the advertised gain of 2.7510
5
 [45].  Finally, the 

pixel capacitance of the MPPC can be known by  

 
 pixel

bias breakdown

Q q M
C

V V V


 
 

. (4.2) 

Applying (4.2) and using the measured charge values above and a bias voltage of 73 V 

give pixel capacitances of approximately 10 fF for both MPPCs.  This pixel capacitance 

value is somewhat smaller than the 20-30 fF reported in [42] and [44]. 

A caveat is worth mentioning here.  The pixel gain specified by Hamamatsu does 

not include a bias voltage but is assumed to be the operating voltage specified on each 

MPPC which is nominally 71.5 V per published specifications [45].  This bias is 

significantly less than the 73 V used in these measurements; therefore the pixel gain may 

be considered lower than expected.  This lower than expected pixel gain corresponds to 

the lower than expected pixel capacitance and may suggest measurement bias.  Since the 

load resistor was chosen to match the impedance of the coaxial cable and oscilloscope 

termination, the equivalent load resistance may have been less than 50 Ω resulting in a 
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lower measured current which would explain the lower measured values of pixel gain and 

capacitance. 

1. 3.  MPPC Response to Scintillation 

Once the MPPCs were calibrated and their pixel response accurately simulated, 

the focus shifts to their application in scintillation detection.  A widely studied 

scintillator, LYSO:Ce, was chosen because of its relatively high light yield and fast decay 

time.  Consequently, LYSO:Ce has a high Birks’ figure of merit value, MLYSO ≈ 650 ph 

ns
-1 

MeV
-1

.  The response of the LYSO:Ce crystal to gamma radiation from a 
22

Na source 

was measured and simulated.  Twenty five thousand scintillation pulse waveforms were 

digitized and collected using the oscilloscope with a rising edge trigger.  One thousand of 

the largest amplitude waveforms were chosen to measure the decay time of the 

scintillator; jitter due to amplitude walk was thereby minimized.  The largest measured 

scintillation pulses are shown individually in Fig. 42 and shown summed and normalized 

in Fig. 43. 
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Fig. 42. MPPC response of LYSO:Ce scintillation pulses due 
22

Na gamma irradiation is shown.  

The waveforms are measured directly from the MPPC readout without any amplification.  

Only the largest pulses were used to analyze the time decay of the scintillator to minimize 

jitter from amplitude walk. 

 

Fig. 43. LYSO:Ce scintillation decay curve as measured by the MPPC is shown normalized.   

The decay time constant is determined by the negative inverse of the slope of the 

exponential fit reported by ROOT [57], an open source C++ data analysis toolkit.  A single 

exponential decay with a 47.1 ns time constant (black line) provides an excellent fit to the 

measured data (black dots).   
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The time domain response of the MPPC to LYSO:Ce scintillation light is in good 

agreement with values published in literature.  ROOT, an open source and object-oriented 

data analysis toolkit [57], was used to provide the exponential fitting parameters; the 

decay time constant is the negative inverse of the “slope” reported by ROOT, 47.1±0.1 

ns.  Although 42 ns is generally accepted as the decay time for the LYSO:Ce, published 

values ranging between 40-50 ns are found in literature and industry [58] [59] [60].  

Thus, the proper time domain response of the MPPC to LYSO:Ce scintillation is 

confirmed. 

The signal amplitude is more challenging to confirm.  The LYSO:Ce crystal is not 

calibrated and therefore has an unknown scintillation light yield.  The repeatability of 

optical coupling of the small crystal to a calibrated PMT window is also a serious 

concern.  Additionally, the optical quality of the author’s attempt at surface polishing is 

somewhat suspect.  As such, the signal amplitude was compared to simulated results 

from DETECT2000 for the correct order of magnitude response. 

The LYSO:Ce scintillation waveforms were processed to generate a pulse height 

spectrum in terms of number of pixels firing, shown in Fig. 44. 
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Fig. 44. MPPC pulse height spectrum of LYSO:Ce in response to 
22

Na γ radiation in terms of 

approximate number of pixels firing.  The 511 keV photopeak is centered near 2 40 pixels.  

The gap in the Compton continuum is due to the high threshold value set to discriminate 

dark counts.  The events at the very left are due to dark counts or spurious trigger events.  

Recall that the effective number of pixels using (2.29) yields approximately 10 times the 

number of physical pixels (i.e. 250 ns integrating time vs. 20-25 ns pixel recharge time).  

Therefore, the small number of pixels firing indicates that the device is operating in the 

linear region and correction of the spectrum for device saturation is not necessary.  A 

rising edge trigger was used to discriminate dark counts and is responsible for the gap in 

the Compton continuum.  However, occasional dark counts with cross-talk or spurious 

noise did breach the voltage threshold.  Normally, such a threshold is set after integrating 

the signal, but this was not practical using the oscilloscope.  Consequently, the gap in the 

continuum is larger than is typically seen in spectroscopy measurements and dark counts 

can be seen at the left of the spectrum.  More sophisticated triggering systems will be 

required if directly digitized waveform data is to be used for MPPC signal readout and 

processing. 
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From Fig. 44, it can be seen that the energy resolution is quite poor (greater than 

40%).  This might be explained by the poor optical finish of the LYSO:Ce crystal or bad 

optical coupling to the MPPC.  More likely, however, this energy resolution spread is due 

to electronic noise which could also explain the 30 channel spread from darkcounts at the 

left of the spectrum.  Nevertheless, it is shown that the 511 keV photopeak from 
22

Na 

positron annihilation corresponds to approximately 240 MPPC pixels firing.  By 

simulating the experiment using DETECT2000, a mean value of 977 photons was 

detected using a 100% efficient detector.  Assuming a photon detection efficiency of 25% 

(which corresponds to the MPPC PDE at 450 nm, the peak of LYSO:Ce emission), one 

should expect 244 MPPC pixels to fire from 977 scintillation photons.   

While this appears to be reasonable agreement between measurement and 

simulation, it is important to bear in mind that the simulation results are drastically 

altered by user specified parameters, primarily the reflectivity coefficient of the simulated 

Teflon tape.  For this simulation, a reflectivity coefficient of 0.95 was selected since it is 

the mean of the generally accepted values (0.92-0.98) found in published literature [61] 

[62] [63][64].  Changing this simulation parameter from 0.92 to 0.98 drastically alters the 

expected number of collected photons from 524 to 2559, respectively.  Although other 

simulation parameters have drastic impact on collection efficiency, none are as 

significant as the surface treatment (assuming reasonability of the physical parameters; 

e.g. light yield, attenuation length, etc.).  Of course, if this simulated phenomenon occurs 

in reality, this would be a substantial source of energy resolution smearing as well. 

This caveat is mentioned not to discredit the agreement between the results of the 

measurements and simulations, rather to remind the reader that the purpose of these 
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measurements and simulations is to confirm the proper amplitude response of the MPPC 

to scintillation light.  Using results from simulations throughout a range of reasonable 

parameters gives agreement to measured results to within, roughly, a factor of 2, thereby 

confirming the proper overall amplitude response (i.e. to well within an order of 

magnitude) of the MPPC to LYSO:Ce scintillation light.   

As a final check, a simulated MPPC waveform was generated by convolving a 

time series of unit impulses (representing the arrival of scintillation photons) with the 

simulated single pixel response of the MPPC as described in Section III. 1. 4.   The 

simulated 511 keV waveform is shown compared to a measured 511 keV waveform in 

Fig. 45.  The simulated pulse is compared to the mean of 25,000 waveforms that fall 

under the photopeak in Fig. 46. 

 

Fig. 45. A fully simulated 511 keV LYSO:Ce scintillation waveform is shown compared to a 511 

keV LYSO:Ce scintillation waveform measured by an MPPC. 
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Fig. 46. A fully simulated 511 keV LYSO:Ce scintillation MPPC waveform is compared to the 

mean of 25,000 measured 511 keV scintillation MPPC waveforms. 

2. YAG:Ce Fiber Findings 

Once the MPPCs were calibrated and their response understood, they were used 

to measure the properties of the YAG:Ce fibers, namely the fluorescence decay time, 

attenuation length, and the energy and position resolution.   

2. 1.  YAG:Ce Scintillation Properties 

An 
241

Am alpha source was used to excite the YAG:Ce fibers, F1-F6 as described 

in Section III. 2. 1.  The scintillation pulse shapes of 1600 events were recorded, summed 

together (i.e. filtering the MPPC signal), and normalized for each fiber, the results are 

shown in Fig. 47.  The decay profile for each fiber was fit using a sum two exponentials 

for each fiber and the fit parameters are given in Table 3.  The fit began at the peak of the 

scintillation pulse (nominally 10 ns) and concluded at 750 ns.  The individual fiber decay 

profiles with fit curves can be found in Appendix A6.  For comparison, recall from 

Table 1 that the fast component of YAG:Ce scintillation increased from ~105-115 ns 
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under gamma scintillation to around 68-89 ns under alpha scintillation, increasing with 

cerium activator concentration. 

 

Fig. 47. The fluorescence decay profile measurements for six YAG:Ce fibers are shown after 

summing and normalizing over hundreds of scintillation pulses.  The tails show slightly 

differing decay times. 

Table 3.  Alpha Particle Scintillation Decay Properties of YAG:Ce Fibers  

  

As seen in Table 3, the fast components of YAG:Ce scintillation decay are in 

agreement with each other in terms of decay times and relative intensities.  However, the 
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fast components are significantly longer than 68-89 ns scintillation decay of bulk 

YAG:Ce reported by Ludziejewski et al. in response to alpha radiation [32].  In fact, the 

fast decay component of the alpha scintillation more closely matches 105-115 ns decay 

associated with gamma scintillation as reported by Ludziejewski et al., see Table 2.  The 

slow decay components of the alpha scintillation reasonably compare to the slow 

components measured by Ludziejewski et al..  The trends of the relative intensities are 

also in agreement with the results reported by Moszynski et al.[32].  Of course, the 

materials studied by these groups can reasonably be assumed to be homogeneously doped 

with cerium activator.  This is unlikely the case for the single crystal fibers grown via 

µ-PD, as shown in [21], [28], and [40]. 

In addition to alpha excitation, F6 was irradiated with gamma rays from a 
22

Na 

source.  The fluorescence decay time profile of gamma scintillation is shown compared to 

alpha scintillation in Fig. 48. 
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Fig. 48. The fluorescence time decay profile of YAG:Ce fiber F6 under gamma excitation is 

shown compared to alpha excitation.  Interestingly, the fast and slow decay constants are 

nearly identical for both gamma and alpha excitation, but the intensities flip.  

The fast and slow decay components of F6 in response to gamma scintillation are 

128.1 ±2.4 ns and 561.8 ±56.8 ns with respective intensities of 56.6 ±1.1% and 

43.4 ±4.8%.  Interestingly, the decay time constants are nearly identical to the fiber’s 

alpha scintillation response.  Thus, the decay time constant change between alpha and 

gamma scintillation in bulk YAG:Ce observed by Moszynski et al. is not apparent in this 

fiber shaped sample.  However, Moszynski et al. report that a slow transfer of energy 

from lattice-to-activator under gamma excitation results in a slow rise time which can be 

seen in the data from F6.  Zych, et al., attribute this to the presence of YAl anti-site 

defects and the subsequent intrinsic luminescence which is strongly absorbed by activator 

sites [20]. Additionally, the change in decay intensities between YAG:Ce alpha and 
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gamma scintillation has been reported by Moszynski et al., however the relative change 

is dependent on Ce concentration, see Table 2 [30]. 

The change in scintillation decay times between gamma and alpha reported by 

Moszynski et al. is attributed to the presence of shallow traps, as shown by Zych et al, 

and is also dependent on the amount of Ce activator [20].  Under alpha excitation, Ce 

activator sites quickly saturate resulting in the population of thermal traps which release 

charge slowly (e.g. tens to hundreds of ns) and can de-excite non-radiatively.  This 

mechanism is responsible for the low α/γ ratio, the short fast component, and long slow 

component which causes the long tail on the alpha scintillation pulse.  The fast primary 

and secondary electrons associated with gamma interaction in the YAG:Ce, transfer their 

energy (via ionization) to the lattice over a greater range and over a longer time period 

than alphas.  In the presence of anti-site defects, de-excitation readily occurs via extrinsic 

luminescence which is absorbed by Ce activator sites, according to Zych, et al. [20].  The 

result is a slower rise time, but more efficient transfer of energy to the Ce activator sites.  

The longer than expected fast decay component for alpha scintillation suggests saturation 

of Ce activator sites.  Perhaps, higher concentration of YAl anti-site defects, which could 

be a result of the rapid growth rates via µ-PD or of the after heater annealing process, 

cause the slower-than-expected fast decay component.  Without further experimentation, 

such explanations remain mere conjectures.  To test this hypothesis, one could identify 

the YAl anti-site defect photoluminescence peak in bulk YAG:Ce and compare its relative 

intensity to that measured in YAG:Ce fibers.  Additionally, positron annihilation lifetime 

spectroscopy comparisons between sintered ceramic YAG:Ce films, bulk single crystal 

YAG:Ce, and fiber single crystal YAG:Ce might test this hypothesis.  Since YAG:Ce 
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ceramics have been shown to be free of YAl anti-site defects in [65], the lifetime of a 

positron in the YAG:Ce might be used to compare the relative abundance of YAl anti-site 

defects in YAG:Ce fibers to those found in bulk YAG:Ce (see [33]). 

A very fast initial decay component (~6 ns decay constant) can be observed 

immediately after reaching the peak (~10-15 ns) in Fig. 47 which may indicate the 

presence of the similarly fast (16 ns) Ce luminescence decay observed in fine grain 

ceramic YAG:Ce scintillators as reported by Zych, et al [66].  However, its intensity was 

too low relative to the entire pulse to accurately measure using the fitting functions.  The 

Ce concentration, according to Fibercryst, is between 0.05-0.10% mol. [38].  Compared 

to the crystals used in the experiments by Ludziejewski et al., these activator 

concentrations are relatively low (0.1 at. %. compared to 1.08 at. % reported in [32]) and 

saturation might explain the slower decay times.  Refer to Table 1 for the decay time data 

reported for various cerium concentrations of YAG:Ce. 

As with the earlier LYSO:Ce scintillation experiment, the readout of alpha 

scintillation waveforms from the YAG:Ce fibers using MPPCs was simulated in 

DETECT2000, using parameters from Moszynski et al..  The fully simulated 5.4 MeV 

alpha scintillation MPPC waveform is shown compared to a measured alpha scintillation 

waveform in Fig. 49.  The same simulated pulse is shown compared to the mean of 8,000 

digitized 5.4 MeV alpha scintillation waveforms in Fig. 50. 
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Fig. 49. A fully simulated 5.4 MeV alpha scintillation waveform in a YAG:Ce fiber as readout 

using an MPPC is compared to a measured event waveform. 

 

Fig. 50. A fully simulated 5.4 MeV alpha scintillation waveform in a YAG:Ce fiber as readout 

using an MPPC is compared to the mean of 8,000 measured waveforms. 

The overall signal amplitude of the measured alpha scintillation waveforms are in 

good agreement with the results of the simulation.  In general, fewer pixels fired in 

measurement than in simulation which may indicate a lower than expected scintillation 
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yield.  This could be explained by particle straggling, or perhaps by a lower concentration 

of Ce activators which is supported by the longer than expected scintillation decay times. 

2. 2.  YAG:Ce Energy Spectrum and Resolution Results 

Attempts to measure the achievable energy resolution using YAG:Ce fibers with 

fiber end MPPC readout, as described in Section III. 2. 2. were unsuccessful due to the 

lack of a measureable photopeak using gamma sources.  Spectra were collected using 

traditional NIM spectroscopy electronics (e.g. charge integrating preamplifier, shaping 

amplifier, and multi-channel analyzer).  A typical measured spectrum is shown in Fig. 51, 

taken under gamma irradiation from a 
22

Na source. 

 

Fig. 51. 22
Na

 
gamma energy spectrum using MPPC readout, NIM spectroscopy electronics, and 

a YAG:Ce scintillating fiber.  Noise integration can be seen near Channel 75 indicating 

very noisy electronics.  A feature resembling a Compton edge appears around Channel 200.  

Extremely low gamma efficiencies should be expected from such thin scintillating 

crystals, especially those with low stopping power such as YAG:Ce.  Consequently, 
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alpha spectroscopy is better suited.  An alpha spectrum from a 
241

Am source taken using 

the same fiber and electronic settings is shown in Fig. 52. 

 

Fig. 52. 241
Am alpha spectrum shown using the same readout and settings as the 

22
Na spectrum 

in Fig. 51.  Noise integration can be seen around Channel 75 indicating very noisy 

electronics.  The alpha peak appears around Channel #667. 

As a side discussion, the electronic noise from this system is a serious concern.  

Noise that was integrated via the preamplifier, shaped, and then digitized can be seen as 

high as Channel 100 from the ADC pulse height spectrum.  A better engineering MPPC 

front end readout to include better shielding and grounding will be essential to improve 

the noise performance of this detector system. 

The Compton edge of a 511 keV gamma ray lies at 340 keV.  If one accepts that 

the Compton edge lies near Channel #200 of Fig. 51 and assumes an α/γ ratio of 21% in 

YAG:Ce, then the peak of the 5.4 MeV alpha associated with 
241

Am should be expected 

at Channel #667, which agrees with the data in Fig. 52.  These results are no substitute 
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for a proper energy calibration, to say the least; rather, they merely serve as sanity check 

to the system response. 

The results of the alpha spectroscopy experiment are somewhat reasonable.  The 

spectrum shown in Fig. 52 appears to be a typical alpha spectrum; there is a well defined 

(albeit broad due to electronic noise) peak with a low energy tail which represents the 

counts of particles which lost energy (i.e. straggling) along their tracks to the detector.  

However, the gamma energy spectrum is lacking distinguishing features making it 

difficult to calibrate and impossible to determine energy resolution.  To explain the lack 

of features, the experiment was simulated using a popular particle tracking code called 

Monte Carlo N-Particle transport code, version 5 (MCNP5) [67].  The simulated energy 

spectra of a pure YAG fiber from several monoenergetic gamma ray beams at two angles 

of incidence are shown in Fig. 53. 
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Fig. 53. The gamma energy spectra of a YAG fiber simulated using MCNP5 are shown for 

beams of monoenergetic 511 keV and 2.6 MeV gamma rays at two angles of incidence .  Side 

illumination means the beam was incident orthogonal to the fiber axis.  End illumination 

means the beam incidence was along the fiber axis.  The reported efficiencies are the total 

number of interactions out of the 100 million incident gamma particles.   

It is clear from Fig. 53 that the YAG:Ce fibers are inherently inefficient by 

themselves and have extremely low photofractions (i.e. the ratio of the area under the 

photopeak to the entire response function).  The 511 keV photofraction is about 3.5% 

while the 2.6 MeV photofraction is a dismal 0.2%.  The spectrum measured in the lab had 

much fewer overall counts and it is therefore unreasonable to expect a distinct photopeak.  

Also, the position resolution measurements required side illumination (i.e. orthogonal to 

the axis) of the fiber.  The results from MCNP5 simulations clearly indicate that the 

fibers are more efficient when illuminated from the end (i.e. along the fiber axis).  This 

increase in efficiency may provide directionality or background reduction for future 

imaging applications.  In addition to inefficiency, another explanation for the lack of well 

defined features in the measured gamma spectrum is offered here.   
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Recall that the Ce concentration of YAG:Ce grown via µ-PD has a strong radial 

dispersion.  In fact, the fiber may be more closely modeled as a shell of highly doped 

YAG:Ce with a lightly doped core rather than a homogeneous material.  As a result, 

when the Compton recoil electrons or photoelectrons deposit their energy along relatively 

long tracks, they excite charge carriers in both regions of high and low Ce concentration 

within the fiber crystal.  Since the scintillation efficiency of the fiber crystal is dependent 

on the activator concentration, the total amount of light produced during scintillation is 

dependent on the location of interaction and the subsequent localized densities of charge 

carriers within the fiber.  In other words, the already poorly defined high energy features 

(due to the inefficiency of the small detector volume) may be smeared due to the 

fluctuations in scintillation light yield which result from varying concentrations of 

activator sites.  

Although the absolute quantities of cerium activator could not be measured in the 

fibers via X-ray fluorescence microscopy or SEM due to low atomic concentrations (i.e. 

0.1 at.% [38]), clear radial dispersion of the cerium can be observed via UV fluorescence 

microscopy.  A 100 µm thick cross-sectional slice of YAG:Ce fiber was cut by 

technicians at the Air Force Research Laboratory Materials and Manufacturing 

Directorate.  The slice was then photographed under a UV microscope.  As shown in 

Fig. 54, there is clearly a radial dispersion of the activator as indicated by the increase in 

luminous intensity near the fiber rim. 
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Fig. 54. An image of a 100 µm thick cross-sectional slice of YAG:Ce fiber taken using a UV 

microscope is shown.  The radial dispersion of the cerium activator is evident by the 

increase in luminous intensity at the rim of the fiber.  The dark spots are most likely 

carbon deposits from the diamond saw blade used to cut the fiber.  

The intensity of the green channel was plotted for three vectors across the fiber, as shown 

in Fig. 55.  However, the camera’s 8-bit ADC was saturated by the intense luminescence 

at even the lowest UV illumination setting; this can be seen by the plateau at values of 

255 in Fig. 55. 
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Fig. 55. The green channel from an image of a YAG:Ce fiber cross-section under UV 

fluorescence is shown on the left.  On the right, the channel intensity is shown as a function 

of radial position for the three different diameter vectors shown in blue, red, and magenta.  

Notice that the CCD’s 8-bit ADC is saturated even at the lowest UV illumination setting.  

Although this data does not indicate the cerium concentration directly, one might 

assume a linear relationship between the concentration and light yield, as shown for 

LuAG:Ce by Dujardin, et al., in [40].  If the average radial intensity is normalized to the 

nominal cerium concentration value of 0.1 at.%, Fig. 55 can be transformed, albeit 

crudely, from intensity to cerium concentration.  The cross-sectional fiber slice is 

obviously not thin enough to neglect the transport of fluorescence photons within the 

material; thus, this approach is a rudimentary oversimplification at best.  Nevertheless the 

shape of the transformation is insightful and, as shown in Fig. 56, agrees rather nicely 

with the calibrated data presented by Dujardin, et al., for a 2 mm diameter LuAG:Ce 

fiber.  Compare, specifically, the shape of the profile in the outer 100 µm of the fiber 

diameter.  
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Fig. 56. Intensity data from YAG:Ce fluorescence has been linearly transformed and 

normalized (to 0.1 at.%) to indicate relative cerium activator concentration (left).  The 

spike at 50 µm in magenta is from a deposit of material, see Fig. 55.  The data is 

comparable to that shown by Dujardin, et al., in [40] for 0.1 at.% cerium doped  LuAG:Ce 

(right).   

The cerium concentration results presented and discussed above invite a variety of 

additional experiments for cerium activated and fiber shaped crystals grown via µ-PD of 

various diameters.  Many questions come to mind.  Is the activator dispersion a function 

of the ratio between fiber volume and surface area?  Is there a limit to this dispersion if 

fibers are grown thin enough?  Can fibers be more heavily doped, then chemically etched 

to remove the highly doped outer shell while also removing optical defects on the fiber 

surface?  

Of course, the present situation leaves open the possibility of energy resolution 

degradation due to light yield smearing as secondary electrons deposit energy along their 

tracks within the scintillator.  The following discussion presents evidence showing that 

the track lengths of fast Compton recoil electrons in YAG:Ce are sufficiently long that 

this possibility of scintillation light yield smearing cannot be overruled.   
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To determine the track length of electrons in YAG:Ce, one can use the stopping 

power and range equations, (2.22) and (2.23).  Additionally, the stochastic nature of light 

particle interactions is well suited for Monte Carlo simulations.  CASINO (v2.42) [68], a 

Monte Carlo software program designed to track electron interaction in user defined 

materials, was used to simulate the trajectories of Compton recoil electrons in YAG:Ce.  

Specifically, beams of 340 keV and 2.36 MeV electrons (corresponding to the Compton 

edges of a 511 keV and 2.6 MeV gamma ray, respectively) were simulated using 

CASINO to track trajectories in a bulk YAG:Ce using the Joy and Luo models for low 

energy electron scattering with cross-section values determined by the Mott and Massey 

interpolation [69].  The CASINO electron trajectories as well as the penetration distance 

and energy distributions are shown in Fig. 57 through Fig. 60 for both 340 keV and 2.36 

MeV electrons.  The results are compared to the electron range in YAG:Ce calculated 

using the Bethe-Bloch formula, see Fig. 15. 
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Fig. 57. Electron trajectory results from CASINO v2.42 simulations of 1000, 340 keV electrons 

in bulk YAG:Ce are shown.  Red tracks are events which backscatter and eventually escape 

the sample, while blue tracks show full energy deposition events.  The results agree nicely 

with 100-200 µm range for 340 keV electrons in YAG:Ce calculated using the Bethe-Bloch 

formula and presented in Fig. 15. 

 

Fig. 58. Energy deposition distribution from CASINO v2.42 simulations of 340 keV electrons in 

bulk YAG:Ce is shown.   
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Fig. 59. Electron trajectory results from CASINO v2.42 simulations of 1000, 2360 keV electrons 

in bulk YAG:Ce are shown.  Red tracks are events which backscatter and eventually escape 

the sample, while yellow (high energy electron) and blue (down scattered, low energy 

electron) tracks show full energy deposition events.  The results agree nicely with the ~1-2 

mm range for 2360 keV electrons in YAG:Ce calculated using the Bethe-Bloch formula and 

presented in Fig. 15. 

 

Fig. 60. Energy deposition distribution from CASINO v2.42 simulations of 2360 keV electrons 

in bulk YAG:Ce is shown.   
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According to the Bethe-Bloch calculations in Fig. 15, the range of a 340 keV 

electron in YAG:Ce is between 100-200 µm which agrees with the CASINO simulations 

shown in Fig. 57 through Fig. 58.  According to Fig. 58, CASINO simulations indicate 

that a 340 keV Compton recoil electron which penetrates further than 100 µm can retain 

more than 10% of its energy.  Even more interesting, however, are the results in Fig. 59 

and Fig. 60 which simulate a 2360 keV Compton recoil electron from a 2.6 MeV gamma 

interaction.  CASINO simulations indicate that the 2360 keV electron ranges are in 

exceess of 1 mm in YAG:Ce, which is also in good agreement with the Bethe-Bloch 

calculations.  According to Fig. 60, the 2360 keV Compton recoil electrons retain as 

much as 75% of their energy after 400 µm and 50% of their energy after 1 mm.  Since 

Compton scattering dominates the gamma ray interactions in this energy regime (200 

keV -3 MeV), these simulated and computed electron ranges in excess of 100 µm can be 

reasonably expected from gamma ray interactions in YAG:Ce. 

The takeaway from this discussion is that the penetration range of even low 

energy Compton recoil electrons is a sizeable portion of the 400 µm YAG:Ce fiber 

diameter.  Higher energy recoil electrons may altogether escape the YAG:Ce fibers, 

depositing only a fraction of their energy in the scintillator.  Although these results do not 

indisputably confirm the presence of scintillation light yield smearing as the charge 

carriers interact in regions of differing Ce concentrations, it certainly does not rule out the 

possibility either.  Likewise, these simulations indicate that tracking Compton recoil 

electrons in neighboring inorganic scintillating fibers is not only possible, but may be 

necessary in order to ensure accurate calorimetry using YAG:Ce scintillating fiber of 

diameters even as large as 1 mm. 
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2. 3.  YAG:Ce Fiber Photoluminescence Position Resolution Results 

The achievable position resolution in a YAG:Ce fiber was measured using both 

photoluminescence from a 405 nm laser and alpha scintillation from an 
241

Am source.  

This section is reserved for the results of the photoluminescence experiments described in 

Section III. 2. 3.   Although the charge carrier kinetics associated with non-ionizing 

photoluminescence are different than those associated with ionizing radiation, the 

emission spectrum is the same due to the 5d-4f transitions of the Ce activator.  Therefore, 

the photoluminescence experiments provide controlled conditions to measure the 

attenuation length of the YAG:Ce fibers to compare to scintillation based measurements. 

By integrating the charge released by dual fiber end MPPC readouts and 

controlling the position-of-interaction, the attenuation length of the fiber can be estimated 

by inverting (2.13).  The attenuation length,  , can be estimated from the slope of a 

linear-least-squares fit of the plot of  2 1log /N N  as a function of the interaction 

position.  That is, the attenuation length is by definition 
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, (4.3) 

where m  is the slope from a linear-least-squares fit of  2 1log /N N  as a function of x , 

the position-of-interaction, and the factor of 10 simply converts between units of 

millimeters (i.e. x  is measured in mm) and centimeters which are conventionally used to 
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describe attenuation length.  By repeatedly mounting the fiber and making independent 

measurements of  , one can gain confidence in the accuracy of the measurement as well 

as assess the repeatability of the optical coupling.  The slope of the linear-least-squares fit 

is reported as the fiber’s attenuation length for all five fibers for each repitition.  To 

quantitatively assess the quality of the linear-least-squares fit, the coefficient of 

determination, R
2
, is computed and indicates the linearity (i.e. the quality) of the fit.  If 

the R
2
 is less than or equal to 0.95 for any trial, that λ measurement is rejected. 

In order to estimate the uncertainty in the  2 1log /N N  using the error 

propagation formula,
 
(2.15), one must first show normality of log iN with mean 

 log iN  and sample variance 
2

log iN
  where iN  is the set of photon counts at the i

th
 

MPPC.  It is important to note that there is no theoretical justification for true normality 

in the distribution of these logarithmic ratios (i.e. one might expect log-normality if iN  is 

large).  It is convenient, however, to apply such an assumption of normality when 

calculating an estimate of the uncertainty, if such an assumption can be justified. 

To justify the assumption of normality, a Kolmogorov-Smirnov goodness-of-fit 

test (KS-Test) was applied to the logarithmic data sets, log iN , at each illumination 

position to test for normality.  Without exception, the null hypothesis of the KS-Test (i.e. 

that the data are normally distributed) was accepted with a 95% confidence interval for 

every photoluminescence data set.  As a result, the error bars on the plots of 

 2 1log /N N  are reported as  
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     (4.4) 

where 
2

log iN
  is the sample variance of the set log iN  at each position, for every fiber 

and repitition.    

Before presenting the results, one final point must be discussed.  First, notice the 

outlying data set on the attenuation length plot for F1 shown in Fig. 61. 

 

Fig. 61. The attenuation length of F1 can be determined by the slope of the  line of  2 1log /N N  

vs. interaction position.  The measurements were repeated five times for each fiber.  The 

slope of the lines should be the same for a given attenuation length.  Repeatability of optical 

coupling is measured by the y-intercept.  The error bars are computed by (4.4). 

By symmetry, one should expect that the ratio of light intensity be equal to unity at the 

mid-point in the fiber (log[1]=0).  This corresponds to the y-axis intercept on the plot.  

Notice that in Fig. 61 only one line intercepts the y=0 at the 50 mm fiber mid-point.  The 

reason for this is because during the second attempt at mounting the fiber crystal, the 

acrylic window of MPPC#2 was accidently damaged by over-tightening the vice mount.  
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Rather than rebuild another MPPC readout circuit and test and calibrate it, the 

experiments were continued with the damaged MPPC#2 under the assumption that valid 

conclusions can still be drawn from relative measurements.  As such, the damaged 

MPPC#2 can be thought of as a less efficient detector or a signal path with more loss.  No 

further damage was done to the device by continuing to use it.  The damage done to 

MPPC#2 can be seen in Fig. 62. 

 

Fig. 62. Damage done to the acrylic window of  MPPC#2 by over-tightening in the vice mount is 

shown.  Extreme caution should be applied when handling the photosensitive surfaces of 

the MPPCs.  The acrylic is soft and easily cracks and scratches; it is not intended for 

pressure coupling with extremely hard surfaces such as thin garnet crystals. 

Despite this incident, the results of the attenuation length measurements for F1 are 

reasonable.  The slopes are repeatable; however, the repeatability of the optical coupling 

is somewhat questionable.  Ignoring the outlier prior to MPPC#2 damage, the data shown 

in Fig. 61 indicates a spread in y-offset by as much as 0.2, which corresponds to a factor 

of  exp 0.2 1.22  in optical coupling repeatability.  The quality of the optical coupling 
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is paramount to successful spectroscopy measurements; therefore, the optical coupling of 

these thin fibers to MPPCs is an area with room for improvement. 

The discussion now returns to the experimental results.  Once estimated, the 

attenuation length is then applied to the inverse problem to determine the achievable 

position resolution of the YAG:Ce fiber under laser excitation.  The achievable position 

resolution is defined by the sample standard deviation of the position estimate 

distribution.  The position resolution is, equivalently, the error bars of the position-of-

interaction plots shown in Fig. 63 through Fig. 68.   

The position-of-interaction plots also report a goodness-of-fit descriptive statistic, 

χ
2
, defined as 
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 , (4.5) 

where x  is the position estimate given by (2.13), x is the true position-of-interaction, and 

2

x
  is the sample variance of the distribution of x  or, equivalently, the position 

resolution squared.  The χ
2
 is averaged across all repititions to give an overall fit to the 

multiple data sets.  Said another way, the average χ
2
 describes the quality of position-of-

interaction reconstruction for each fiber.  Lower χ
2
 values indicate better fits to the truth 

data.  Individual position resolution estimates from curves with values of χ
2
 greater than 

20 are rejected due to excess residual error. A summary of the attenuation length and 

position resolution measurements of F1-F5 are shown in Table 4.  Results in red strike-

through cells have been rejected either because of low R
2
 or low χ

2
 values (rejection 

source is highlighted in yellow).  
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Table 4.  Attenuation lengths and position resolution of five YAG:Ce fibers 

measured using 405 nm laser induced photoluminescence  

Fiber Repitition

[cm] R
2 [mm] χ

2
χ

2 
Average

1 18.6 0.99 6.4 2.05

2 17.5 0.98 6.5 2.59

3 24.5 0.99 3.6 3.13

4 20.3 0.98 4.7 6.36

5 21.1 0.99 3.9 4.57

1 9.5 0.91 2.3 153.94

2 10.9 0.86 2.6 213.27

3 9.5 0.89 2.2 185.77

4 9.8 0.87 2.7 113.78

5 10.7 0.86 2.9 97.09

1 24.6 0.99 7.2 1.08

2 31.0 0.98 5.5 4.00

3 29.3 0.98 7.5 1.45

1 17.3 0.94 2.2 100.17

2 14.0 0.95 5.0 17.91

3 14.5 0.96 3.4 27.60

4 13.1 0.95 2.9 50.00

5 14.2 0.95 3.5 27.55

1 18.4 0.99 3.8 3.59

2 14.5 0.97 3.7 12.78

3 14.6 0.96 3.4 18.62

4 15.1 0.96 2.9 32.05

5 16.8 0.96 3.1 25.69

1

2

4

5

44.6

18.5

Attenuation Length, λ

3

3.7

152.8

2.2
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Fig. 63. Using measured attenuation length data, the photoluminescence position-of-interaction 

in F1 can be estimated.  The error bars on the blue dots represent the position resolution 

(i.e. sample standard deviation) at that point.  The red squares represent the true position-

of-interaction.  The size of the red squares is equal to the FWHM of the laser beam, 2.6 

mm. 

0 20 40 60 80 100

0

20

40

60

80

100

Source Position (mm)

E
s
ti
m

a
te

d
 P

o
s
it
io

n
 (

m
m

)

 

 

2
 = 3.74

Measured

True



 

124 
 

Of course, the assumption that the light attenuation follows (2.12) is essential to 

estimating position of interaction using a simple function.  In other words, if the plot of 

 2 1log /N N  is not a straight line, the process described to estimate position fails.  Such 

is the case for F2, as shown in Fig. 64 and Fig. 65.   For example, the attenuation length 

measurements for fibers F2 and F4 are rejected essentially due their poor linear 

correlation.  That is, the  2 1log /N N  is too non-linear to accurately model the optical 

attenuation properties using Beer’s law. 

 

Fig. 64. The plot of  
2 1

log /N N is not a straight line for F2.  Shown are five independent and 

repeatable measurements.  The exponential attenuation model does not provide an accurate 

description of the light propagation in F2.  The error bars are computed by (4.4).  R
2
 is the 

coefficient of determination calculated by the square of the correlation coefficient.  R
2
 = 

0.848 indicates a poor linear fit. 
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Fig. 65. Using an exponential attenuation model provides a poor reconstruction of the position -

of-interaction in F2.  The response is suspected to be due to a local imperfection near x=30 

mm which causes disproportionate distribution of light intensity at the fiber end readouts 

due to reflection or absorption.  The average χ
2
 goodness-of-fit statistic is over 40 times 

higher than in F1 as shown in Fig. 63, indicating very poor position estimates.  

The most reasonable explanation for the light propagation behavior observed in 

F2 is the presence of a localized region of absorption or reflection.  A small imperfection 

in the crystal at approximately 30 mm from the end (i.e. the point of slope disjoint) is 

likely acting as an absorber or reflector of incident light.  The light intensity measured on 

the side of the interaction is therefore disproportionately higher than the opposite side.  

As a result and according to the goodness-of-fit parameter χ
2
, F1 position estimates are 

40 times better than those from F2.  Although F2 was inspected under a microscope, the 

presence of such an imperfection was not obvious.  Ultimately the fiber was damaged 

during microscopy and the presence of the imperfection remains only conjecture.   
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Fig. 66. Fiber F3 shows a position-of-interaction reconstruction slightly better than that of F1 

as evidenced by the average χ
2
=2.18.  The size of the red squares is equal to the FWHM of 

the laser beam, 2.6 mm. 

 

 

Fig. 67. The position-of-interaction reconstruction of F4, while better than F2, suffers from bias 

due to the faulty assumption that light propagation within the fiber follows  an exponential 

attenuation model. The red squares represent the true position-of-interaction.  The size of 

the red squares is equal to the FWHM of the laser beam, 2.6 mm.  
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Fig. 68. Fiber F5 generally follows the exponential attenuation model for reconstructing 

position-of-interaction. The goodness-of-fit is better than F2 and F4, but not as good as 

either F1 or F3.  The error bars on blue dots represent the position resolution at that point.  

The red squares represent the true position-of-interaction.  The size of the red squares is 

equal to the FWHM of the laser beam, 2.6 mm. 

Some attenuation length variation between fiber samples should be expected.  No 

qualitative assessment of these fibers is offered.  The measured attenuation lengths are 

somewhat repeatable.  Discrepancies between repetitions of the same fiber are attributed 

to power fluctuations in the laser; power observably decreased by as much as 50% over 

the course of several minutes.   

Care was taken to avoid MPPC saturation, but outliers are attributed to 

inadvertent saturation.  For example, changes to the setting of the graduated neutral 

density filter account for the absent F3 data (i.e. repetitions four and five).  The laser 

output power which was monitored throughout the experiment began to decline just prior 

to repetition four of F3; therefore the neutral density filter was reduced to allow more 
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laser light to pass through.  During the measurements the laser power increased to its 

nominal level and mild MPPC saturation occurred.  As the MPPC saturates due to photon 

pile up,  2 1log /N N  decreases and the data falsely indicates a more transparent crystal.  

Therefore, repetitions four and five for F3 are not presented.   

Pile up saturation and laser power fluctuation may also explain the rather large 

range of attenuation length values measured for F1.  As mentioned in Section III. 2. 3. , 

this saturation due to pile up may raise some concern over flaws in the methodology 

since the MPPCs (and SiPMs in general) are not designed to accurately count photons 

under continuous illumination from bright light sources.  This methodology could be 

improved by using a pulsed laser with pulse widths on the order of pixel recharge times, 

around 20 ns or less. 

2. 4.  YAG:Ce Fiber Scintillation Position Resolution Results 

To complement the photoluminescence experiment, the position resolution of the 

dual fiber end MPPC readout of YAG:Ce fibers was measured using scintillation.  Unlike 

the large, stable MPPC signals (e.g. on the order of several thousands of pixels firing 

during the 250 ns integrating time) found in the laser photoluminescence experiment, the 

MPPC pixels which fire due to YAG:Ce alpha scintillation number in the hundreds.  

Consequently, the MPPC signals are not subject to the pile up saturation problems 

discussed above, but are subject to the inherent uncertainties associated with photon 

counting statistics.  Therefore, the scintillation experiment to measure position resolution 

was simulated in DETECT2000 using three crystals of different attenuation lengths (e.g. 

10 cm, 20 cm, and 30 cm) to predict the achievable position resolution; these simulations 
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are discussed at the end of Section III. 2. 3.   In order to better understand the results of 

the experiments, the simulation results are first discussed. 

A 1 MeV gamma equivalent event producing 17,000 photons was simulated at 

1 cm increments between 1 cm and 9 cm along the YAG:Ce fiber axis.  Using a polished 

surface treatment, DETECT2000 was used to simulate the trajectories of the photons 

until detection at the fiber ends.  The experiment was repeated 30 times at each simulated 

position-of-interaction in order to estimate the mean number of photons in the 

scintillation flux (for the given number of total scintillation photons).  The scintillation 

photon flux was then modeled as Poisson distributed random variables from which a 

random number of MPPC pixels fired in accordance with binomial statistics and the PDE 

of the MPPC (e.g. 15% at 550 nm).  The mean number of MPPC pixels which fire is 

plotted as a function of interaction position in Fig. 69 through Fig. 71. 

 

Fig. 69. The mean number of simulated MPPC pixels firing is shown as a function of interaction 

location along a YAG:Ce fiber with an attenuation length of 10 cm.  The error bars indicate 

the standard deviation of the number of pixels based on counting statistics.  

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Position of Interaction Along Fiber Axis [mm]

N
u
m

b
e
r 

o
f 

P
ix

e
ls

 W
h
ic

h
 F

ir
e

 

 

MPPC#1

MPPC#2



 

130 
 

 

Fig. 70. The mean number of simulated MPPC pixels firing is shown as a function of interaction 

location along a YAG:Ce fiber with an attenuation length of 20 cm.  The error bars indicate 

the standard deviation of the number of pixels based on counting statistics.  

 

Fig. 71. The mean number of simulated MPPC pixels firing is shown as a function of interaction 

location along a YAG:Ce fiber with an attenuation length of 30 cm.  The error bars indicate 

the standard deviation of the number of pixels based on counting statistics.  

Since the number of pixels which fire is a random variable, there is inherent 

position uncertainty which is conditioned on the number of total scintillation photons, see 
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(2.21).  Of course, in reality the number of initial scintillation photons is a random 

variable as is the energy deposited by ionizing radiation which is a stochastic process, 

further complicating calculation of the position resolution predicted by (2.21).  Supposing 

that full energy events (i.e. events under the alpha peak) can be discriminated 

electronically or by digital processing, then the number of initial scintillation photons can 

be treated deterministically based on the expected light yield of the material, thereby 

simplifying the position resolution calculations.  Full energy peak discrimination is the 

underlying premise of the following analysis of the simulated results which is intended 

only to provide insight about the lower bound of the achievable position resolution. 

Using the mean number of firing pixels, 50,000 MPPC measurements were 

simulated in accordance with the stochastic process model for MPPC pixel firing.  The 

simulated data were used to reconstruct an estimate of the position-of-interaction on an 

event-by-event basis.  The simulated results of the position-of-interaction reconstruction 

are shown in Fig. 72 and Fig. 73. 
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Fig. 72. Simulated results of the position-of-interaction reconstruction using a Monte Carlo 

method to model the stochastic process of MPPC pixels firing are shown for three crystals 

of different attenuation lengths.  In aggregate, the simulated results accurately reconstruct  

the position-of-interaction.  The spread in data is due solely to the random nature of the 

MPPC response, in accordance with binomial statistics.  The different colors are associated 

with the different attenuation lengths of the crystals: blue is 10 cm, red 20cm, and green 30 

cm. 

 

Fig. 73. The simulated position-of-interaction reconstruction data from the 30 cm attenuation is 

shown as a histogram.  The different colors indicate different true positions-of-interaction.  

The spread in the data (i.e. the standard deviation) is the ideal position resolution.  
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Using the mean number of firing MPPC pixels shown in Fig. 69 – Fig. 71 for each 

of the three simulated fiber crystals, the ideal position resolution is calculated by (2.21).  

The analytical results are compared to the results of a Monte Carlo simulation of MPPC 

signal dispersion due to random fluctuations shown in Fig. 72; the comparatrive results 

are shown in Fig. 74. 

 

Fig. 74. Ideal position resolution of a 1 MeV (gamma equivalent) scintillation pulse in three 

YAG:Ce fibers of different attenuation lengths using dual fiber end MPPC readout is 

shown.  The lines represent the analytical position resolution which is described by (2.21).  

The squares represent the results of Monte Carlo simulations of the MPPC pixel firing 

process given a simulated scintillation photon flux modeled in DETECT2000.  

Intuitively, more transparent crystals (i.e. those with longer attenuation lengths) 

have less relative difference between the two fiber end readouts; this is seen by the 
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the ideal achievable position resolution degrades as the crystal becomes clearer despite 

improving the ideal achievable energy resolution.  Using (2.19), the ideal energy 

resolutions given a 17,000 photon scintillation event are shown in Fig. 75. 

 

Fig. 75. Ideal energy resolution of a 1 MeV (gamma equivalent) scintillation pulse in three 

YAG:Ce fibers of different attenuation lengths using dual fiber end MPPC readout is 

shown.  The lines represent the analytical energy resolution which is described by (2.19).  

The squares represent the results of Monte Carlo simulations of the MPPC pixel firing 

process given a simulated scintillation photon flux modeled in DETECT2000. 

Recall that the data shown in Fig. 69- Fig. 71 is shown using full energy event 

discrimination for simplicity.  In a Compton imaging application, even low energy 

Compton scattering events are necessary to form an image.  Therefore, uncertainties in 

energy and position resolution must be calculated in real-time on an event-by-event basis.  
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The results of the Monte Carlo simulation verify the application of (2.19) and (2.21) for 

such imaging applications. 

In addition to simplifying both the discussion and computation of the ideal energy 

and position resolutions achievable in a YAG:Ce fiber with dual end MPPC readouts, the 

deterministic number of scintillation photons (e.g. 17,000 per 1 MeV gamma equivalent 

event) was chosen for the simulations as a reasonable approximation to the expected light 

yield from full energy 5.4 MeV alpha scintillation events.  The data presented therefore 

represent a reasonable, albeit idealized, lower bound of energy and position resolution 

which can be achieved from the scintillation experiments.  At best, a position resolution 

of 4-9 mm can be achieved in a readout system without excess noise, depending upon the 

fiber attenuation length.  Worse performance must be expected for any event of less than 

full energy deposition. 

Before presenting the experimental results, it is appropriate to discuss some 

interesting findings from the simulations.  As in the experimental results, the attenuation 

length of the crystal is required to produce an estimate of the position-of-interaction.  

Interestingly, the estimated attenuation length is less than the parameter specified in the 

DETECT2000 simulations.  The “measured” (i.e. from simulated data) attenuation 

lengths of the three crystals were 7.9, 16.0, and 23.7 cm rather than the specified 10, 20, 

and 30 cm respectively.  This result directly corresponds to the mean path length of the 

photons in the crystal fiber before being detected.  On average, the photons travel nearly 

1.25 times further than their axial position in the fiber before being detected.  Therefore, 

the effective attenuation length of the crystals is approximately 0.8 bulk , which agrees 

with results published by Vilardi, et al., in [22].  The true value of the bulk attenuation 
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length is inconsequential since one is constrained to using the effective attenuation length 

in this application.  However, it is important to be mindful of this fact when selecting 

crystals based on reported bulk attenuation lengths for dual fiber readout applications. 

Now, the results from the position-of-interaction experiment conducted using the 

collimated 
241

Am alpha source are presented.  First, the mean number of MPPC pixels 

which fire is estimated by integrating the charge released in each recorded digital 

waveform.  Pixel firing results from F1 are shown in Fig. 76. 

 

Fig. 76. The mean number of MPPC pixels firing in response to alpha scintillation in F1.  The 

error bars represent the standard deviation of the measured pixel response data.  It is 

important to recall that low energy events are not discriminated in the collection or 

processing of these data.  The lack of symmetry is due to the damaged, less efficient 

MPPC#2. 

From the MPPC response data presented in Fig. 76, the mean number of pixels 

firing in response to alpha scintillation is significantly lower than predicted by the 

simulation, see Fig. 69-Fig. 71.  This is attributed to the presence of low energy events 

(i.e. other than full energy peak) and poor optical coupling.  The result is the inclusion of 
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events with necessarily poorer energy and position resolution.  That said, the majority of 

events should fall under the broad alpha peak seen in Fig. 52.   

Additionally, one can observe asymmetry in the pixel response due to the 

damaged, less efficient MPPC#2.  If both MPPCs had the same gain response and 

efficiency, one would expect the lines to cross at the center of the fiber, 50 mm.  This 

asymmetry has implications on the achievable energy and position resolution, as will be 

shown. 

The discussion now returns to the experimental results.  As in the 

photoluminescence experiments, the attenuation lengths were computed using the slopes 

of linear-least-squares-fit of  2 1log /N N .  The positions-of-interaction are then 

reconstructed using the measured attenuation length and the position resolution is defined 

as the sample standard deviation of the resulting distribution.  The reconstruction of the 

position-of-interaction is shown for F1-F5 in Fig. 77-Fig. 82.  The R
2
 values of the 

 2 1log /N N  plots and χ
2
 values of the x  plots are computed identically as well.  For 

attenuation length measurements, as with the photoluminescence experiment, values of 

R
2
 less than or equal to 0.95 are rejected.  However, because the inherent position 

uncertainties are much higher (due to counting statistics), the χ
2
 values as defined by (4.5) 

are necessarily smaller in value than those computed during photoluminescence 

experiments.  The mean χ
2 

values are approximately an order of magnitude less for the 

scintillation results.  As such, the χ
2
 values between experiments are not comparable and 

values greater than 2.0 result in the rejection of the position resolution measurement.  A 

summary of the experimental attenuation length and position resolution results can be 
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found in Table 5.  Rejected values are shown in red strike-through font; the yellow 

highlighted cell indicates the source of rejection. 

Table 5.  Attenuation lengths and position resolutions measured in five YAG:Ce 

fibers using scintillation from a 5.4 MeV alpha source  
Fiber Repitition

[cm] R
2 [mm] χ

2
χ

2 
Combined

1 15.2 0.99 16.8 0.28

2 11.4 0.99 12.6 0.31

3 11.7 0.99 11.4 0.52

1 18.0 0.92 19.2 0.64

2 13.2 0.80 12.5 6.65

3 13.5 0.81 12.5 4.97

1 23.4 0.98 21.1 0.17

2 24.6 0.99 23.2 0.11

3 24.8 0.98 22.2 0.12

1 17.9 0.99 18.6 0.24

2 18.2 0.99 18.8 0.21

3 16.0 0.96 17.4 0.51

1 16.4 0.99 17.3 0.21

2 15.9 0.98 16.7 0.34

3 15.1 0.98 15.2 0.44

1

2

3

4

5

0.32

0.33

Attenuation Length, λ

0.37

4.10

0.14

Mean Spatial Resolution

 

 

Fig. 77. The reconstruction of alpha particle position-of-interaction within F1 is shown.  The 

blue circles are the mean of the position-of-interaction estimates using (2.13) with position 

resolution as error bars.  The red squares represent true source positions; the size of the 

squares is equal to the 2.4 mm beam width of the collimated alpha source.  
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Recall that light propagation within F2 did not resemble the exponential 

attenuation during the photoluminescence experiments.  The same phenomenon was 

observed in the scintillation experiments, but with much more drastic impact.  The fiber 

orientation was unintentionally flipped during mounting for these experiments.  That is, 

the defect observed at 30 mm during the photoluminescence experiments is now at 70 

mm.  The overall number of pixels which fire is drastically reduced at the opposite fiber 

end.  This problem is exacerbated by placing the defective side on MPPC#2, the damaged 

and less efficient MPPC.  The estimated number of fired pixels as a function of source 

position is plotted in Fig. 78 for F2.  As a consequence of the extremely low number of 

pixels firing, the position resolution achieved by F2 in the scintillation experiments is 

terrible, seen in Fig. 79. 

 

Fig. 78. The discrepancy between the light propagation in F2 and the expected exponential 

attenuation which was observed in the photoluminescence experiments is repeatable in the 

scintillation experiment.  Here, the fiber has been flipped so the disjoint due to suspected 

optical defects is observed by the change in slope near 70 mm rather than 30 mm. The 

defective fiber is on the side closest to the damaged MPPC#2 resulting in low numbers of 

fired pixels and consequently terrible position resolution.  
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Fig. 79. The accuracy and resolution of the alpha position-of-interaction reconstruction in F2 is 

very poor due to the low number of fired MPPC pixels.  Additionally, the light propagation 

discrepancy observed for F2 during the photoluminescence experiments is again observed 

in scintillation experiments and is responsible for the over 10 times worse χ
2
 compared to 

F1. 

 

Fig. 80. The reconstruction of the alpha particle position-of-interaction within F3 is shown.  

The blue circles are the mean of the position-of-interaction estimates using (2.13) with 

position resolution as error bars.  The red squares represent true source positions; the size 

of the squares is equal to the 2.4 mm beam width of the collimated alpha source. 
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Fig. 81. The reconstruction of the alpha particle position-of-interaction within F4 is shown.  

The blue circles are the mean of the position-of-interaction estimates using (2.13) with 

position resolution as error bars.  The red squares represent true source positions; the size 

of the squares is equal to the 2.4 mm beam width of the collimated alpha source. 

 

 

Fig. 82. The reconstruction of alpha particle position-of-interaction within F5 is shown.  The 

blue circles are the mean of the position-of-interaction estimates using (2.13) with position 

resolution as error bars.  The red squares represent true source positions; the size of the 

squares is equal to the 2.4 mm beam width of the collimated alpha source. 
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With exception of the terrible performance of F2 which has already been 

discussed and rejected, the position-of-interaction reconstruction showed good aggregate 

performance (i.e. no rejections due to large χ
2
), indicating that the exponential attenuation 

is a reasonable model for the light propagation within YAG:Ce fibers including F4 which 

was rejected from photoluminescence measurements due to poor R
2
 values.   

With some exceptions, the attenuation lengths measured in the scintillation 

measurements agree with the photoluminescence results found in Table 4.  The general 

trend in fiber performance is in agreement.  Fiber F3 is the most transparent according to 

both data sets with an attenuation length of ~25 cm.  Fibers F1, F4, and F5 all have 

attenuation lengths between ~13-20 cm.  Overall, the scintillation measurements provided 

much more repeatable attenuation length measurements.  As discussed, this may be 

attributable to flaws in the photoluminescence methodology caused by photon pile up 

saturation. 

The large error bars in Fig. 77 - Fig. 82 indicate relatively poor position 

resolution, which may be a result of a lower than expected number of pixels firing as a 

result of lack of full energy discrimination or poor optical coupling.  The best overall 

measured position resolution was 11 mm using F1.  The worst overall position resolution 

(ignoring the defective F2) was 23 mm using F3.  As expected from (2.21), the most 

transparent crystal (i.e. F3 has the longest attenuation length) has the worst position 

resolution while the most opaque (i.e. F1 has the shortest attenuation length) has the best 

position resolution.  However, assuming the measured attenuation lengths are reasonably 

accurate, the measured position resolution is a factor of two worse than the ideal position 

resolutions of the simulated crystals, see Fig. 74.   
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Additional noise factors such as the fluctuations in pixel gain and discharge, as 

well as the integration of cross-talk, after pulses, and dark counts, as well as electronic 

noise from the oscilloscope are also likely contributors to the poor position resolution. 

These noise sources are exacerbated by the very slow decay component and low overall 

light yields of the YAG:Ce fibers which necessitate the use of long integration times and 

excessive bias voltages (in order to directly digitize MPPC readouts).  Johnson et al. 

include these noise sources in the excess noise factor term in (2.30) [50].  While cross-

talk and dark count rates can be directly measured, after pulsing is more difficult to 

quantify.  Prompt after pulsing occurs when the pixel is retriggered before recharging 

fully and the charge released is less than that of a full pixel discharge.  Delayed after 

pulsing (i.e. after the pixel is recharged) is difficult to distinguish from dark counts.  For 

these reasons, the excess noise from after pulses is neglected in the following analysis. 

The variation in the pixel gain is difficult to distinguish from the oscilloscope 

noise in the measurements shown in Fig. 32 and Fig. 38 and is termed electronic noise.  

From the measurement of the FWHM of the single fired pixel distributions, the relative 

electronic noise is ~7%.  From Fig. 40, one can see that the probability of MPPC pixel 

cross-talk is 12-13% at 73 V, the bias voltage used in these experiments.  Thus, the 

number of pixels firing as a result of true photon detection is less than the measured 

value.  Since, the dark count rate was measured between 200-300 kHz , the excess noise 

effects from dark counts are negligible during a 1 µs integration time.  Of course, to 

accurately estimate the overall excess noise factor, one must measure the MPPC signal 

dispersion using a calibrated light source as in [50].  In [50], Johnson et al. report similar 
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values of cross-talk and excess noise factors between 1.08 and 4.19 depending on 

operating bias. 

To explain the worse than predicted measured position resolution, the experiment 

was again simulated, but under modified conditions in order to model the asymmetric 

MPPC readout efficiencies and match the mean number of fired pixels (shown in 

Fig. 76).  This was accomplished by reducing the PDE of MPPC#1 from 15% to 11% and 

by reducing the PDE the damaged MPPC#2 from 15% to 9%.  Additionally, the 

DETECT2000 simulation was adjusted to simulate eff  equal to 13 cm, in accordance 

with the measured F1 attenuation length (see Table 5).  Additionally, an arbitrarily 

chosen excess noise factor term of 1.7 is applied to the theoretical calculations and Monte 

Carlo simulations.  The excess noise value is selected empirically to fit the data and, 

while arbitrary, is reasonable according to results published in [50].  The results are 

compared to the F1 measurements in Fig. 83 and Fig. 84. 
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Fig. 83. The poor optical coupling of the scintillator and MPPC and the damage to MPPC#2 

was simulated and compared to the measured MPPC response.  The photon detection 

efficiencies of MPPC#1 and MPPC#2 were reduced from 15% to 11% and 9%, respectively.  

Only the means of the measured data are shown; the data are presented without error bars 

for clarity. The error bars can be found in Fig. 76. 

 

Fig. 84. The position resolution of the asymmetric simulation is shown with an excess noise 

factor of 1.7, chosen to match the measured position resolution of F1.  

The best position resolution (measured using F1) seems to reasonably match the 

theoretical and simulated values with an excess noise factor of 1.7, suggesting very poor 
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noise performance of the system.  The excess electronics noise could be avoided in the 

future with proper instrumentation (e.g. incorporating a customized charge integrating 

pre-amplifier into the MPPC readout circuit front end).  The excess noise due to cross-

talk and after pulses could then be minimized by reducing the required operating bias.   

Better optical coupling between the MPPC and the scintillator could also improve the 

overall performance of the system.  However, the low Birks’ figure of merit value (e.g. 

M ≈ 68 ph ns
-1 

MeV
-1

) of YAG:Ce is a fundamental limitation of the signal-to-noise 

performance of the system. 

2. 5.  Improving System Resolution 

Despite their slow decay component and subsequent low Birks’ figure of merit 

value, the YAG:Ce fibers are not the limiting factor in the achievable position resolution 

of the dual end MPPC readout system.  Instead, the real culprit is the MPPC which has a 

PDE of 15% at the peak of YAG:Ce emission.  According to the DETECT2000 

simulations, between 1000 and 3000 scintillation photons arrive at each MPPC detector 

surface, depending on the fiber attenuation length.  By essentially throwing away 85% of 

them, the MPPC devastates the achievable energy and position resolution of the system.  

This efficiency limitation is due to the low geometric fill factor of the 1600 pixel MPPC 

(30.8% [45]), required to reduce cross-talk.  Although a greater number of pixels allows 

for greater dynamic range and less saturation, a device with far fewer pixels and a much 

higher fill factor is better suited for scintillators with low Birks’ figure of merit values 

because the effective number of pixels (due to pixel recharge during the long scintillation 

pulse) will allow proportional response, but the device will be much more efficient.  For 

example, the S10362-11-100C and -50C are the 100 and 400 (78.5% and 61.5% fill 
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factors, respectively [45]) pixel versions of the MPPC used in this research and they have 

respective PDEs of 55% and 35% at 550 nm [45].  To illustrate the improvement to the 

detector system by simply replacing the MPPC with a more efficient model, the Monte 

Carlo simulations and analytical calculations of ideal energy and position resolution were 

repeated using the S10362-11-100C 100 pixel device.  The results are shown in Fig. 85 - 

Fig. 87. 

 

Fig. 85. The number of simulated pixels which fire using the more efficient S10362-11-100C 100 

pixel Hamamatsu MPPC is drastically increased over the 1600 pixel MPPC used in this 

research when coupled to a YAG:Ce fiber with a simulated attenuation length of 10 cm.  
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Fig. 86. The achievable position resolution of a 1-MeV (gamma equivalent) scintillation event in 

a YAG:Ce fiber is significantly improved when readout using a more efficient 100 pixel 

MPPC as opposed to the inefficient 1600 pixel MPPC used in this research.   Any effects of 

saturation are ignored.  Lines indicate the analytical solution and squares indicate the 

results of Monte Carlo simulations. 

 

 

Fig. 87. The achievable energy resolution of a 1-MeV (gamma equivalent) scintillation event in 

a YAG:Ce fiber is significantly improved when readout using a more efficient 100 pixel 

MPPC as opposed to the 1600 pixel MPPC used in this research.  Any effects of saturation 

are ignored.  Lines indicate the analytical solution and squares indicate the results of 

Monte Carlo simulations. 
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It is clear from the simulated results shown in Fig. 85-Fig. 87, that the MPPC 

chosen for these experiments was suboptimal.  Both the ideal achievable energy and 

position resolutions were improved by as much as a factor of two simply by substituting 

100 pixel MPPCs for the 1600 pixel MPPCs.  However, these results ignored the effects 

of MPPC saturation which increases as pixelsN  decreases and PDE increases.   

The risk of saturation from using a 100 pixel MPPC is especially high since the 

400 µm diameter YAG:Ce fiber only covers 12.5% of the 1 mm
2
 active area.  To 

determine the best MPPC model for this application, one must substitute 

 
1000

0.125 6.25
20

shapeeff YAG
pixels pixels pixels pixels

MPPC recharge

Area ns
N N N N

Area ns




        (4.6) 

for pixelsN  in (2.26) and compute (2.28) using the expected number of scintillation 

photons from the DETECT2000 simulations (e.g. 1000-3000 for YAG:Ce depending on 

 ).  The ratio /YAG MPPCArea Area  is simply the percentage of the MPPC active area 

covered by the scintillating fiber footprint.  The shaping and recharge times, shape  and 

argrech e , are 1000 and 20 ns, respectively.  The results of these computations are shown 

in Fig. 88 for 100, 400, and 1600 pixel MPPCs with their respective PDEs.  Note that the 

MPPC intrinsic amplitude resolution results presented in Fig. 88 are from single fiber end 

MPPC readout simulations which cannot be compared to previously reported energy 

resolution results which were computed using (2.19) for double end readouts. 
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Fig. 88. The intrinsic amplitude resolutions of the 100, 400, and 1600 pixel MPPCs in response 

to a 1 MeV (gamma equivalent) scintillation event in a 400 µm diameter YAG:Ce fiber were 

computed using (2.28) and are shown from top to bottom.  The contribution from 

saturation is R0 while the contribution from counting statistics is Rstat.  Note that the 

resolution values are reported as  / / 2.35
E FWHM

E R  , not the FWHM. 
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Again, as shown in Fig. 88, the 1600 pixel MPPC was clearly a poor choice for 

this application.  The best choice for this application is the 400 pixel MPPC.  As 

expected, the contribution from saturation effects is essentially negligible for both the 

400 and 1600 pixel MPPC.  However, saturation is the limiting factor for the intrinsic 

resolution of the 100 pixel MPPC.  This is primarily due to the size of the fiber relative to 

the MPPC.  If the areas of the scintillator and MPPC are matched, the effect from 

saturation, and consequently the intrinsic resolution, is reduced.  Evidence for this claim 

is provided in Fig. 89. 
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Fig. 89. The intrinsic amplitude resolutions of the 100 MPPC in response to a 1  MeV (gamma 

equivalent) scintillation event in 400 µm and 1 mm diameter YAG:Ce fibers were computed 

using (2.28).  The top plot shows the effect from saturation resulting from fewer available 

pixels due to the surface area mismatch between a 400 µm fiber to a 1 mm
2
 MPPC.  The 

bottom plot shows the improvement of matching scintillator and MPPC areas.  The 

contribution from saturation is R0 while the contribution from counting statistics is Rstat.  

Note that the resolution values are reported as  / / 2.35
E FWHM

E R  , not the FWHM. 

As shown in Fig. 89, the impact on intrinsic resolution from MPPC saturation is 

drastically reduced if the YAG:Ce fiber diameters were matched to the dimensions of the 

MPPC active area.  In fact, the 100 pixel MPPC becomes the best solution of the three 

available Hamamatsu models under these conditions.  While using thinner fibers allows 
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for more inherent precision for particle tracking, no additional spatial interaction 

information is preserved by using scintillators with smaller cross-sections than the MPPC 

readout.  Therefore, the best solution for continuation of this research is a 100 pixel 

Hamamatsu S10362-100C MPPC coupled to a 1 mm diameter YAG:Ce fiber.   

For fibers other than YAG:Ce, the Birks’ figure of merit of the scintillator can be 

used to approximate the best number of pixels for the application.  Recall from Section II. 

5. 5.  that the intrinsic resolution described by (2.28) has an absolute minimum of

1.59  , where   is now defined as the mean number of photoelectrons per effective 

pixel defined as / eff
photons pixelsPDE N N   .  One can rewrite   in terms of the 

scintillating material’s Birks’ figure of merit, M , by 

 

photons Fiber recharge

eff
pixels shapepixels

Fiber recharge Fiber rechargeS

pixels pixels

PDE N PDE L E

NN

PDE PDEL
M

N N

 




   

  

    
 



   
 

 

 (4.7) 

where Fiber  is the efficiency of light collection, transmission, and escape in a single end 

of the scintillating fiber (which can be modeled in DETECT2000 and is approximately 

15-20% for n=1.8 materials when using detector index matching fluid), and   is the 

length of integration time in terms of the number of scintillator decay time constants,  .  

Typical   values range between 5 and 6.  The total scintillation light yield, SL , is a 

function of the light yield of the material, L  (in units of photons per MeV), and the 

energy deposited by a 1 MeV (i.e. gamma equivalent) quantum of ionizing radiation, E .  

By substituting the various MPPC parameters and scintillator Birks’ figure of merit into 
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(4.7) and then into (2.28), one can determine which MPPC model will provide the best 

signal amplitude resolution for a given application. 

As MPPC technology continues to improve, devices with even more pixels, 

higher PDEs and lower noise may usher in the end of scintillation counting using 

traditional PMTs.  At some point, the achievable energy resolution of even low light yield 

scintillation detector systems may be limited by the intrinsic resolution of the scintillator 

rather than the material’s light yield.  Additionally, as garnet crystal growth using µ-PD 

continues to improve, the presence of anti-site defects and their resulting shallow charge 

carrier traps will diminish, thereby producing scintillators with faster and higher intensity 

fast decay components.  Indeed, the future for this type of scintillation detector system is 

bright.   

 

  



 

155 
 

V.  Conclusion, Summary, and Recommendations 

The background, motivation, theory, methodology, and results of this research 

have been presented.  The ability to calorimetrically measure and track gamma ray 

interactions in bundles of scintillating fibers has important applications in numerous 

fields ranging from medical imaging to national security.  Compton imaging of SNM at 

standoff ranges is one such application.  This research focused on predicting, modeling, 

and measuring the achievable energy and position resolutions in YAG:Ce fiber crystals 

using SiPMs for such an application. 

Inorganic fiber scintillators coupled to highly efficient SiPMs is a promising new 

concept for a gamma ray detection system.  Unfortunately, due to the inefficiency (i.e. 

low density, low effective Z) of the material and its small volume, no energy resolution 

could be measured using a single 400 µm YAG:Ce fiber with dual end MPPC readout.  

Radial dispersion of cerium activator concentration caused by growth via µ-PD is 

suspected to cause smearing of high gamma interactions due to the large range of recoil 

and photoelectrons in YAG:Ce.   

Alpha and gamma radiation interactions in YAG:Ce fibers showed different 

scintillation decay times, as reported in literature.  However, the fast and slow 

components did not change substantially as observed by Ludziejewski, et al., and 

Moszynski, et al.; instead, only a change in relative decay component intensities was 

observed between alpha and gamma irradiation.  Additionally, the alpha scintillation fast 

component was consistently measured above 113 ns in all fiber samples, much slower 

than reported values (e.g. 68-89 ns, depending on cerium concentration) for bulk 

YAG:Ce.   
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Photoluminescence and scintillation experiments showed effective attenuation 

lengths ranging from 10-25 cm in five different YAG:Ce fibers.  The methodology 

employed, specifically using continuous laser illumination, is somewhat suspect due to 

photon pile up saturation; methodology improvements could be made by instead using a 

pulsed laser.  Using scintillation from a 2.4 mm beam of alphas, position-of-interaction 

resolutions as low as 11 mm were measured in a YAG:Ce fiber using noisy, sub-optimal 

readout electronics; better shielding is required.  Calculations have shown that position 

resolutions of less than 10 mm are achievable with the current system.  

Several improvements to the current detector system are described in this thesis.  

First, simply replacing the 1600 pixel MPPC with a more efficient model could improve 

the overall position resolution by a factor of two.  Secondly, fiber areas should match the 

SiPM area in order to maximize optical coupling and reduce the probability of saturation.  

The SiPM should be chosen to have a balance between dynamic range and efficiency, 

thereby optimizing the signal amplitude resolution.  A formula based on Birks’ figure of 

merit and SiPM parameters has been presented to aid in the selection of the best SiPM 

(i.e. in terms of smallest value of resolution, R ) for a given application.  The intrinsic 

SiPM resolution is given by 

 

 
2

exp 12.35 1

pixelspixels

Fiber recharge

pixels

R
NN

where

PDE
M

N

 

 

 




 
 



 




 (5.1) 
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where Fiber  is the trapping efficiency of the fiber, recharge  is the recharge time of the 

pixel,   is the integration time in terms of number of scintillator decays (e.g. 5-6), and 

M  is the Birks’ figure of merit defined by (2.5). 

Although YAG:Ce is mechanically very stable, inexpensive, and easy to grow, 

other inorganic scintillating fiber materials may be better suited for Compton camera 

applications.  Lutetium based scintillators (e.g. LYSO:Ce or LuAG:Ce) are an obvious 

choice for improved gamma detection efficiencies.  Unfortunately, the intrinsic 

background from 
176

Lu decay may prevent implementation in low count rate applications.  

The rare-earth aluminum perovskite crystals (e.g. YAP:Ce) have higher densities than the 

chemically similar garnets.  They are also much faster and single-component, although 

less mechanically stable, scintillators (~20-30 ns).  Oxyorthosilicates (e.g. LSO:Ce, 

YSO:Ce, GSO:Ce, and their mixes) are also more efficient and faster scintillators than 

YAG:Ce.  One potentially useful oxyorthosilicate, GSO:Ce, is based on gadolinium 

which is higher Z than yttrium.  Additionally, 
157

Gd has the highest neutron capture 

cross-section of any stable nuclide.  The 72 keV conversion electrons associated with 

39% of the (n,
157

Gd) reactions could be easily measured in the scintillator.  GSO is 

known to be difficult to grow, cut, and polish.  However, the mixture with other rare-

earths may stabilize the crystal.  Nonetheless, it is a material which should be considered 

in the detection of SNM, especially in an active interrogation application capable of time 

discrimination of gamma and neutron interactions. 

Garnets are easy to grow and mechanically robust compared to perovskite or 

oxyorthosilicate oxide crystals.  Perhaps, a gadolinium and yttrium mixed aluminum 

garnet (GdYAG:Ce) could produce a more efficient, combined gamma/neutron 
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scintillator.  However, the anti-site defects associated with the single crystal rare-earth 

aluminum garnet scintillators form trapping sites which slow the transfer of energy and 

release charge to activator sites.  The result is long scintillation pulses and afterglow.  

The fluorescence observed in the six YAG:Ce fiber crystal samples show significantly 

longer alpha scintillation fast decay components than in previous works.  This could be a 

result of the saturation of activator sites, radial dispersion of activator in the region of 

alpha interaction in µ-PD fiber crystals, or excess YAl anti-site defects.  More study of the 

properties of rare-earth aluminum garnets is required to isolate the cause of the observed 

slow scintillation decay in thin fibers. 

Finally, the Monte Carlo scintillation photon tracking simulator, Monte Carlo 

SiPM photon detection simulator, and expanded circuit models developed for SiPMs 

could be integrated into a single product using a toolkit such as ROOT or GEANT4.  This 

product could model real gamma ray sources and fully simulate the scintillation photon 

production and detection processes.  The output of these simulations could be used to 

optimize system performances and isolate sources of excess noise. 

Despite measuring worse-than-expected energy and position resolutions using 

dual fiber end MPPC readout of YAG:Ce fibers, the concept of an inorganic scintillating 

fiber and SiPM based particle tracking calorimeter remains a very promising area of 

research.
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A1. LYSO:Ce DETECT2000 Code 

; DETECT2000 simulation of 1x1x12 mm3 LYSO crystal 

; Brad Jones, Thesis, Oct 2010                                                                                                                           

; Materials:  

;LYSO 1.82 ref index, 10-20 cm abs length = 100-200mm, 450 nm peak, 45ns tau  

;Attenuation length, AD, increased to test optic theory                                                                                                             

DMAT1,1.82NV,2000.AD,450.PLV,1DT,45.TAU                                           

                                                                                                                           

; Finishes and Examples:                                                 

DFIN1,PAINT,0.95RC 

DFIN2,DETECT,1.46NV,1.QEV,PS                                                                                                    

                                                                                                                           

; Geometry:         

DPT1,0.X,0.Y,6.Z 

DPT2,0.X,0.Y,6.Z   

DPT3,1.X,0.Y,0.Z   

DPLN1,0.5X 

DPLN2,-0.5X 

DPLN3,0.5Y 

DPLN4,-0.5Y 

DPLN5,-6.Z 

DPLN6,6.Z                                                                                              

                                                                                                                           

; Components:                                                                                                              

COMP1,MAT1          

SURF2,FIN1,PLN2,XL                                                                                                        

SURF1,FIN1,PLN1,XS 

SURF4,FIN1,PLN4,YL 

SURF3,FIN1,PLN3,YS 

SURF5,FIN1,PLN5,ZL 

SURF6,FIN2,PLN6,ZS                                                                                                                                                                                 

                                                                                                                           

; Program Control:                                                                                                         

FLAG,0FAST_QE,0VERBOSE                                                                                                     

LIFE500.000000                                                                                                            

FATES3               

PROJ3,PT1,PT2,PT3,X1.001,Y1.001,BINX40,BINY40                                                                                                       

TRACE0  

;Light created between XS and XL in mm                                                                                                                 

GEN,MAT1,-0.50000XS,0.50000XL,-0.50000YS,0.500000YL,-6.000000ZS,6.000000ZL 

 

; Program Execution 

SEED924                                                                                                                    

RUN27500                                                                                                                     

END                               
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A2. YAG:Ce DETECT2000 Code 

; DETECT2000 simulation of 10 cm 400um YAG:Ce fiber crystal 

; Brad Jones, Thesis, Oct 2010                                                                                                                             

; Materials:  

;YAG 1.82 ref index, 10-20 cm abs length = 100-200mm, 550 nm peak, 70ns tau  

;YAG:Ce alpha decay parameters from Mozynski NIM A398 p290                                                                                           

DMAT1,1.82NV,2000.AD,550.PLV,1DT,88.9TAU,0.149TAUW,458.5TAU,0.851TAUW                                

                                                                                                                           

; Finishes and Examples:      

DFIN1,PAINT,0.RC 

DFIN2,POLISH 

DFIN3,DETECT,1.46NV,1.QEV,PS                                                                                                    

                                                                                                                           

; Geometry:         

DPT1,0.X,0.Y,52.Z 

DPT2,0.X,0.Y,52.Z   

DPT3,1.X,0.Y,0.Z   

DPLN1,-51.Z 

DPLN2,-50.Z 

DPLN3,50.Z 

DCYL1,0.200R                                                                                                        

                                                                                                                           

; Components:                                                                                                              

COMP1,MAT1                                                                                                                 

SURF1,FIN3,PLN2,ZL                                                                                                        

SURF2,FIN3,PLN3,ZS                                                                                                       

SURF3,FIN2,CYL1,RS                                                                                                                                                                                    

                                                                                                                           

; Program Control:                                                                                                         

FLAG,0FAST_QE,0VERBOSE                                                                                                     

LIFE500.000000                                                                                                            

FATES3               

PROJ3,PT1,PT2,PT3,X1.,Y1.,BINX40,BINY40                                                                                                    

TRACE0  

 

;Light created between XS and XL in mm, adjust ZS and ZL to move beam                                                                                                                 

GEN,MAT1,-0.20000XS,0.2000XL,-0.00000YS,0.000000YL,-0.000000ZS,-0.000000ZL 

 

; Program Execution 

SEED924                                                                                                                    

RUN17000                                                                                                                     

END                                                                                             
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A3. YAG:Ce Stopping and Range of Ions in Matter (SRIM)  

================================================================== 

              Calculation using SRIM-2006  

              SRIM version ---> SRIM-2008.04 
              Calc. date   ---> January 09, 2011  

 ================================================================== 

 Disk File Name = SRIM Outputs\Helium in  Y-Al- O 
 Ion = Helium [2] , Mass = 4.003 amu 

 Target Density =  4.5500E+00 g/cm3 = 9.2316E+22 atoms/cm3 

 ======= Target  Composition ======== 
    Atom   Atom   Atomic    Mass      

    Name   Numb   Percent   Percent   

    ----   ----   -------   -------   
      Y     39    015.00    044.93    

     Al     13    025.00    022.73    

      O      8    060.00    032.34    
 ==================================== 

 Bragg Correction = 0.00% 

 Stopping Units =  MeV / (mg/cm2)  
 See bottom of Table for other Stopping units  

 

   Ion        dE/dx      dE/dx     Projected  Longitudinal   Lateral 
  Energy      Elec.      Nuclear     Range     Straggling   Straggling 

-----------  ---------- ---------- ----------  ----------  ---------- 
   1.00 MeV   1.168E+00  1.571E-03    2.20 um     1689 A      2208 A    

   1.10 MeV   1.145E+00  1.453E-03    2.38 um     1733 A      2276 A    

   1.20 MeV   1.120E+00  1.352E-03    2.58 um     1777 A      2343 A    
   1.30 MeV   1.093E+00  1.265E-03    2.77 um     1821 A      2410 A    

   1.40 MeV   1.067E+00  1.190E-03    2.98 um     1866 A      2478 A    

   1.50 MeV   1.040E+00  1.123E-03    3.18 um     1910 A      2545 A    
   1.60 MeV   1.015E+00  1.065E-03    3.40 um     1956 A      2614 A    

   1.70 MeV   9.894E-01  1.012E-03    3.61 um     2002 A      2683 A    

   1.80 MeV   9.651E-01  9.646E-04    3.84 um     2050 A      2753 A    
   2.00 MeV   9.192E-01  8.830E-04    4.30 um     2196 A      2897 A    

   2.25 MeV   8.671E-01  7.996E-04    4.91 um     2414 A      3085 A    

   2.50 MeV   8.203E-01  7.315E-04    5.56 um     2636 A      3282 A    
   2.75 MeV   7.784E-01  6.747E-04    6.25 um     2863 A      3488 A    

   3.00 MeV   7.409E-01  6.266E-04    6.97 um     3095 A      3706 A    

   3.25 MeV   7.071E-01  5.853E-04    7.72 um     3332 A      3934 A    
   3.50 MeV   6.767E-01  5.495E-04    8.51 um     3574 A      4172 A    

   3.75 MeV   6.491E-01  5.180E-04    9.34 um     3821 A      4421 A    

   4.00 MeV   6.240E-01  4.902E-04   10.20 um     4072 A      4680 A    
   4.50 MeV   5.802E-01  4.430E-04   12.02 um     4933 A      5230 A    

   5.00 MeV   5.431E-01  4.046E-04   13.97 um     5770 A      5820 A    

   5.50 MeV   5.115E-01  3.727E-04   16.05 um     6595 A      6447 A    
   6.00 MeV   4.840E-01  3.457E-04   18.25 um     7416 A      7111 A    

   6.50 MeV   4.601E-01  3.226E-04   20.58 um     8237 A      7810 A    

   7.00 MeV   4.389E-01  3.025E-04   23.01 um     9061 A      8543 A    
   8.00 MeV   4.031E-01  2.694E-04   28.23 um     1.19 um     1.01 um   

   9.00 MeV   3.748E-01  2.431E-04   33.87 um     1.46 um     1.18 um   

  10.00 MeV   3.479E-01  2.217E-04   39.94 um     1.72 um     1.36 um   
----------------------------------------------------------- 

 Multiply Stopping by        for Stopping Units 

 -------------------        ------------------ 
  4.5498E+01                 eV / Angstrom  

  4.5498E+02                keV / micron    

  4.5498E+02                MeV / mm        
  1.0000E+00                keV / (ug/cm2)  

  1.0000E+00                MeV / (mg/cm2)  

  1.0000E+03                keV / (mg/cm2)  
  4.9285E+01                 eV / (1E15 atoms/cm2) 

  4.7856E+00                L.S.S. reduced units 

 ================================================================== 
 (C) 1984,1989,1992,1998,2008 by J.P. Biersack and J.F. Ziegler 

================================================================== 
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              Calculation using SRIM-2006  
              SRIM version ---> SRIM-2008.04 
              Calc. date   ---> January 19, 2011  
 ================================================================== 
 
 Disk File Name = SRIM Outputs\Helium in Air, Dry (gas) 
 
 Ion = Helium [2] , Mass = 4.003 amu 
 
 Target Density =  1.2484E-03 g/cm3 = 5.0794E+19 atoms/cm3 
 Target is a GAS  
 ======= Target  Composition ======== 
    Atom   Atom   Atomic    Mass      
    Name   Numb   Percent   Percent   
    ----   ----   -------   -------   
      C      6    000.01    000.01    
      O      8    023.18    025.06    
      N      7    075.53    071.48    
     Ar     18    001.28    003.45    
 ==================================== 
 Bragg Correction = 0.00% 
 Stopping Units =  MeV / (mg/cm2)  
 See bottom of Table for other Stopping units  
 
   Ion        dE/dx      dE/dx     Projected  Longitudinal   Lateral 
  Energy      Elec.      Nuclear     Range     Straggling   Straggling 
-----------  ---------- ---------- ----------  ----------  ---------- 
   1.00 MeV   1.873E+00  2.032E-03    5.26 mm   260.84 um   337.31 um   
   1.10 MeV   1.821E+00  1.875E-03    5.69 mm   269.96 um   344.71 um   
   1.20 MeV   1.765E+00  1.741E-03    6.14 mm   279.22 um   352.05 um   
   1.30 MeV   1.709E+00  1.627E-03    6.60 mm   288.69 um   359.42 um   
   1.40 MeV   1.653E+00  1.527E-03    7.07 mm   298.42 um   366.85 um   
   1.50 MeV   1.599E+00  1.440E-03    7.57 mm   308.42 um   374.40 um   
   1.60 MeV   1.548E+00  1.363E-03    8.07 mm   318.72 um   382.10 um   
   1.70 MeV   1.499E+00  1.294E-03    8.60 mm   329.32 um   389.97 um   
   1.80 MeV   1.452E+00  1.232E-03    9.14 mm   340.22 um   398.04 um   
   2.00 MeV   1.368E+00  1.126E-03   10.28 mm   380.20 um   414.82 um   
   2.25 MeV   1.276E+00  1.017E-03   11.79 mm   441.18 um   437.15 um   
   2.50 MeV   1.197E+00  9.287E-04   13.41 mm   501.88 um   461.10 um   
   2.75 MeV   1.129E+00  8.552E-04   15.13 mm   562.71 um   486.73 um   
   3.00 MeV   1.068E+00  7.931E-04   16.95 mm   623.92 um   514.09 um   
   3.25 MeV   1.015E+00  7.399E-04   18.87 mm   685.65 um   543.18 um   
   3.50 MeV   9.680E-01  6.937E-04   20.88 mm   748.00 um   574.02 um   
   3.75 MeV   9.254E-01  6.533E-04   23.00 mm   811.01 um   606.58 um   
   4.00 MeV   8.869E-01  6.175E-04   25.21 mm   874.75 um   640.84 um   
   4.50 MeV   8.196E-01  5.572E-04   29.90 mm     1.11 mm   714.42 um   
   5.00 MeV   7.626E-01  5.081E-04   34.96 mm     1.33 mm   794.55 um   
   5.50 MeV   7.136E-01  4.674E-04   40.38 mm     1.55 mm   881.02 um   
   6.00 MeV   6.710E-01  4.330E-04   46.17 mm     1.76 mm   973.66 um   
   6.50 MeV   6.334E-01  4.036E-04   52.30 mm     1.97 mm     1.07 mm   
   7.00 MeV   6.001E-01  3.781E-04   58.79 mm     2.19 mm     1.18 mm   
   8.00 MeV   5.434E-01  3.361E-04   72.81 mm     2.98 mm     1.40 mm   
   9.00 MeV   5.021E-01  3.028E-04   88.13 mm     3.70 mm     1.65 mm   
  10.00 MeV   4.633E-01  2.759E-04  104.73 mm     4.41 mm     1.92 mm   
----------------------------------------------------------- 
 Multiply Stopping by        for Stopping Units 
 -------------------        ------------------ 
  1.2484E-02                 eV / Angstrom  
  1.2484E-01                keV / micron    
  1.2484E-01                MeV / mm        
  1.0000E+00                keV / (ug/cm2)  
  1.0000E+00                MeV / (mg/cm2)  
  1.0000E+03                keV / (mg/cm2)  
  2.4577E+01                 eV / (1E15 atoms/cm2) 
  2.1453E+00                L.S.S. reduced units 
 ================================================================== 
 (C) 1984,1989,1992,1998,2008 by J.P. Biersack and J.F. Ziegler 
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A4. Source Beam Width Calculations 

Alpha Source 

 

1mm BW
=

4.8mm 2×5.8mm

BW = 2.4mm

 

Laser Source 
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A5. MCNP5 Code 

Compact Compton Camera Fiber Simulation 

c Brad Jones 

c 15 Jul 10 
c  

c Description: This model is of a single .4x100 mm right cylindrical YAG:Ce fiber crystal scintillator for use in the CCC. 

c 
   1     1  -4.55 -1 imp:p 1 

   99     3  -0.0012 -100 1 imp:p 1 

  100   0  100 imp:p 0  
 

    1       rcc -5 0 0 10 0 0 .02  

  100       rpp -11 11 -10 10 -2 2 
 

mode p 

*tr1 0 0 0  0 90 90  90 0 90  90 90 0 
c Cerium doped YAG and LYSO 

m1 39000 -.449 13000 -.2273 16000 -0.3217 58000 -0.002 $YAG:Ce 0.2% Ce 

m2 71000 -0.66 39000 -0.082 16000 -0.066 8000 -.19 58000 -0.002 $LYSO:Ce 80% Lu 0.2% Ce 
c Air 

m3    6000  -0.000124 7000  -0.755268  8000 -0.231781  18000 -0.012827   $ C N O Ar 

c 
c 2.6MeV Source Definition 

c sdef pos= -7 0 0 par=2 erg=d1 vec=0 -1 0 dir=1 
c si1 L 2.6 

c sp1 d 1.0 

 
c 511 keV Source Definition 

c sdef pos= -7 0 0 par=2 erg=d1 vec=0 -1 0 dir=1 

c si1 L 0.511 
c sp1 d 1.0 

c 

c 662 keV Source Definition 
sdef pos= -7 0 0 par=2 erg=d1 vec=1 0 0 dir=1 

si1 L 0.662 

sp1 d 1.0 
c 

c Doppler Broadening Off 

c phys:p 4j 1 
NPS 100000000 

c 

c Tally specification files 
f8:p 1 

e8 0.0100000000000000 0.0200000000000000 0.0300000000000000 

 0.0400000000000000 0.0500000000000000 0.0600000000000000 
 0.0700000000000000 0.0800000000000000 0.0900000000000000 

 0.100000000000000 0.110000000000000 0.120000000000000 

 0.130000000000000 0.140000000000000 0.150000000000000 
 0.160000000000000 0.170000000000000 0.180000000000000 

 0.190000000000000 0.200000000000000 0.210000000000000 

 0.220000000000000 0.230000000000000 0.240000000000000 
 0.250000000000000 0.260000000000000 0.270000000000000 

 0.280000000000000 0.290000000000000 0.300000000000000 

 0.310000000000000 0.320000000000000 0.330000000000000 
 0.340000000000000 0.350000000000000 0.360000000000000 

 0.370000000000000 0.380000000000000 0.390000000000000 

 0.400000000000000 0.410000000000000 0.420000000000000 
 0.430000000000000 0.440000000000000 0.450000000000000 

 0.460000000000000 0.470000000000000 0.480000000000000 

 0.490000000000000 0.500000000000000 0.510000000000000 
 0.520000000000000 0.530000000000000 0.540000000000000 

 0.550000000000000 0.560000000000000 0.570000000000000 

 0.580000000000000 0.590000000000000 0.600000000000000 
 0.610000000000000 0.620000000000000 0.630000000000000 

 0.640000000000000 0.650000000000000 0.660000000000000 
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 0.670000000000000 0.680000000000000 0.690000000000000 

 0.700000000000000 0.710000000000000 0.720000000000000 
 0.730000000000000 0.740000000000000 0.750000000000000 

 0.760000000000000 0.770000000000000 0.780000000000000 

 0.790000000000000 0.800000000000000 0.810000000000000 
 0.820000000000000 0.830000000000000 0.840000000000000 

 0.850000000000000 0.860000000000000 0.870000000000000 

 0.880000000000000 0.890000000000000 0.900000000000000 
 0.910000000000000 0.920000000000000 0.930000000000000 

 0.940000000000000 0.950000000000000 0.960000000000000 

 0.970000000000000 0.980000000000000 0.990000000000000 
 1 1.01000000000000 1.02000000000000 

 1.03000000000000 1.04000000000000 1.05000000000000 

 1.06000000000000 1.07000000000000 1.08000000000000 
 1.09000000000000 1.10000000000000 1.11000000000000 

 1.12000000000000 1.13000000000000 1.14000000000000 

 1.15000000000000 1.16000000000000 1.17000000000000 
 1.18000000000000 1.19000000000000 1.20000000000000 

 1.21000000000000 1.22000000000000 1.23000000000000 

 1.24000000000000 1.25000000000000 1.26000000000000 

 1.27000000000000 1.28000000000000 1.29000000000000 

 1.30000000000000 1.31000000000000 1.32000000000000 

 1.33000000000000 1.34000000000000 1.35000000000000 
 1.36000000000000 1.37000000000000 1.38000000000000 

 1.39000000000000 1.40000000000000 1.41000000000000 

 1.42000000000000 1.43000000000000 1.44000000000000 
 1.45000000000000 1.46000000000000 1.47000000000000 

 1.48000000000000 1.49000000000000 1.50000000000000 
 1.51000000000000 1.52000000000000 1.53000000000000 

 1.54000000000000 1.55000000000000 1.56000000000000 

 1.57000000000000 1.58000000000000 1.59000000000000 
 1.60000000000000 1.61000000000000 1.62000000000000 

 1.63000000000000 1.64000000000000 1.65000000000000 

 1.66000000000000 1.67000000000000 1.68000000000000 
 1.69000000000000 1.70000000000000 1.71000000000000 

 1.72000000000000 1.73000000000000 1.74000000000000 

 1.75000000000000 1.76000000000000 1.77000000000000 
 1.78000000000000 1.79000000000000 1.80000000000000 

 1.81000000000000 1.82000000000000 1.83000000000000 

 1.84000000000000 1.85000000000000 1.86000000000000 
 1.87000000000000 1.88000000000000 1.89000000000000 

 1.90000000000000 1.91000000000000 1.92000000000000 

 1.93000000000000 1.94000000000000 1.95000000000000 
 1.96000000000000 1.97000000000000 1.98000000000000 

 1.99000000000000 2 2.01000000000000 

 2.02000000000000 2.03000000000000 2.04000000000000 
 2.05000000000000 2.06000000000000 2.07000000000000 

 2.08000000000000 2.09000000000000 2.10000000000000 

 2.11000000000000 2.12000000000000 2.13000000000000 
 2.14000000000000 2.15000000000000 2.16000000000000 

 2.17000000000000 2.18000000000000 2.19000000000000 

 2.20000000000000 2.21000000000000 2.22000000000000 
 2.23000000000000 2.24000000000000 2.25000000000000 

 2.26000000000000 2.27000000000000 2.28000000000000 

 2.29000000000000 2.30000000000000 2.31000000000000 
 2.32000000000000 2.33000000000000 2.34000000000000 

 2.35000000000000 2.36000000000000 2.37000000000000 

 2.38000000000000 2.39000000000000 2.40000000000000 

 2.41000000000000 2.42000000000000 2.43000000000000 

 2.44000000000000 2.45000000000000 2.46000000000000 

 2.47000000000000 2.48000000000000 2.49000000000000 
 2.50000000000000 2.51000000000000 2.52000000000000 

 2.53000000000000 2.54000000000000 2.55000000000000 

 2.56000000000000 2.57000000000000 2.58000000000000 
 2.59000000000000 2.60000000000000 2.61000000000000 

 2.62000000000000 2.63000000000000 2.64000000000000 

 2.65000000000000 2.66000000000000 2.67000000000000 
 2.68000000000000 2.69000000000000 2.70000000000000 
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A6. YAG:Ce Alpha Decay Profile Data 

 

Fiber F1 decay profile data and ROOT two exponential decay fitting parameters. 
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Fiber F2 decay profile data and ROOT two exponential decay fitting parameters. 

 

 

Fiber F3 decay profile data and ROOT two exponential decay fitting parameters. 
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Fiber F4 decay profile data and ROOT two exponential decay fitting parameters. 

 

 

Fiber F5 decay profile data and ROOT two exponential decay fitting parameters. 
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Fiber F6 decay profile data and ROOT two exponential decay fitting parameters. 
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device parameters and the Birks’ figure of merit of the scintillating material, are presented. 
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